Paper Reading ๐Ÿ“œ/Deep Learning

Prompt Engineering์ด ๋ฌด์—‡์ผ๊นŒ?

2023. 3. 1. 10:43

 ์—ฌ๋Ÿฌ LM๋“ค์˜ ๊ฐœ๋ฐœ๋กœ ์ธํ•˜์—ฌ ์‚ฌ๋žŒ๋“ค์€ ์ „๋ก€ ์—†๋Š” ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ๋“ค์„ ๋งŒ๋‚˜๊ณ  ์žˆ๋‹ค. ์ด ์–˜๊ธฐ๋ฅผ ์—ฌ๋Ÿฌ ํฌ์ŠคํŠธ์—์„œ ํ–ˆ๋˜ ๊ฒƒ ๊ฐ™์€๋ฐ, ChatGPT๋Š” ์•„์ง๋„ ๋ฌด๊ถ๋ฌด์ง„ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ LM๋“ค์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด Prompt Engineering์ด๋‹ค. ๋ณธ ๋ธ”๋กœ๊ทธ์—์„œ ๋ฆฌ๋ทฐํ•œ ์—ฌ๋Ÿฌ ๋…ผ๋ฌธ๋“ค์—์„œ๋„ ๋“ฑ์žฅํ–ˆ๋˜ Prompt Engineering์— ๋Œ€ํ•ด ๋”์šฑ ์ž์„ธํ•œ ์ดํ•ด๊ฐ€ ํ•„์š”ํ•  ๊ฒƒ ๊ฐ™์•„์„œ ์ด๋ ‡๊ฒŒ ํฌ์ŠคํŠธ๋ฅผ ์ž‘์„ฑํ•ด๋ณธ๋‹ค. ๐Ÿค“ 

 

 ์šฐ์„  Prompt Engineering์— ๋Œ€ํ•ด์„œ ์•Œ์•„๋ณด๊ธฐ ์ „์— Prompt๊ฐ€ ๋ฌด์—‡์ธ์ง€ ๋ถ€ํ„ฐ ์•Œ์•„๋ณด๋„๋ก ํ•˜์ž! ๐Ÿ”ฅ

 

Prompt๋ž€?

 Prompt๋Š” LLM์œผ๋กœ๋ถ€ํ„ฐ ์‘๋‹ต์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ์ž…๋ ฅ๊ฐ’์„ ์˜๋ฏธํ•œ๋‹ค. ๋‹ค์Œ์˜ ๊ทธ๋ฆผ์ด Prompt์˜ ์˜ˆ์‹œ์ด๋‹ค.

 

Prompt์˜ ์˜ˆ์‹œ

 

 ์˜ˆ๋ฅผ ๋“ค์–ด ์„ค๋ช…ํ•˜์ž๋ฉด, LM์—๊ฒŒ '๋ฉ”์ผ์˜ ๋‚ด์šฉ์„ ์š”์•ฝํ•ด์ค˜'์™€ ๊ฐ™์€ ์ง€์‹œ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด ์ง€์‹œ๊ฐ€ ๋ฐ”๋กœ ์‘๋‹ต์„ ์–ป์–ด๋‚ด๊ธฐ ์œ„ํ•œ prompt์ด๋‹ค.

 

Prompt Engineering

 Prompt Engineering์€ LLM์œผ๋กœ๋ถ€ํ„ฐ ๋†’์€ ํ’ˆ์งˆ์˜ ์‘๋‹ต์„ ์–ป์–ด๋‚ผ ์ˆ˜ ์žˆ๋Š” prompt ์ž…๋ ฅ๊ฐ’๋“ค์˜ ์กฐํ•ฉ์„ ์ฐพ๋Š” ์ž‘์—…์„ ์˜๋ฏธํ•œ๋‹ค. model์— ์‚ฌ์šฉํ•  prompt๋ฅผ ๋””์ž์ธํ•  ๋•Œ ๋‹ค์Œ์˜ ๋‘ ์•„์ด๋””์–ด๋ฅผ ๋ช…์‹ฌํ•˜๊ณ  ์žˆ์œผ๋ฉด ๋œ๋‹ค.

 

1. Prompt๋Š” model์ด ์œ ์šฉํ•œ output์„ ์ƒ์„ฑํ•˜๋„๋ก ๊ฐ€์ด๋“œ

 

 ์˜ˆ๋ฅผ ๋“ค์–ด ๋งŒ์•ฝ ๋ฌธ์„œ๋ฅผ ์š”์•ฝํ•ด์•ผ ๋  ๋•Œ, ๋งŽ์€ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต๋œ LM์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฐ€์ด๋“œ๋ฅผ ํ†ตํ•ด ์š”์•ฝ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค.

 

์ด prompt๋Š” ์š”์•ฝํ•˜๊ณ ์ž ํ•˜๋Š” text์™€ task ์„ค๋ช…, ์ด๋ ‡๊ฒŒ ๋‘ ๊ฐœ์˜ ์š”์†Œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.

 

2. ์ตœ๊ณ ์˜ ์ƒ์„ฑ๋ฌผ์„ ์–ป๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ prompt๋ฅผ ์‹œ๋„

 

 ์ƒ์„ฑ์„ ํ•  ๋•Œ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋‹ค์–‘ํ•œ prompt๋ฅผ ์‹œ๋„ํ•ด๋ณด๋Š” ๊ฒƒ์ด ์œ ์šฉํ•˜๋‹ค. ๋˜‘๊ฐ™์€ ๋‚ด์šฉ์˜ prompt์ด์ง€๋งŒ, ๋‹จ์–ด์™€ ๋ฌธ๋ฒ•์ด ๋‹ค๋ฅด๋“ฏ ์ด๋Ÿฌํ•œ ์‚ฌ์†Œํ•œ ์ฐจ์ด๊ฐ€ ์ƒ์„ฑ ๊ฒฐ๊ณผ๋ฅผ ๋‹ค๋ฅด๊ฒŒ ํ•œ๋‹ค.

 

 ์˜ˆ๋ฅผ ๋“ค์–ด ์š”์•ฝ ์˜ˆ์ œ์—์„œ "In summary"๋Š” ์ข‹์€ ์ƒ์„ฑ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์ง„ ์•Š๋Š”๋ฐ, "To summarize in plain language" ๋˜๋Š” "The main point to take from this article is that"๊ณผ ๊ฐ™์€ prompt๋ฅผ ์ฃผ๋ฉด ๋” ๋‚˜์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค.

 

3. task์™€ ๊ธฐ๋ณธ์ ์ธ ์„ธํŒ…์„ ์„ค๋ช…

 

task์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ์„ค๋ช…์€ ์œ ์šฉํ•จ

 

 model์—๊ฒŒ ์ถฉ๋ถ„ํ•œ context๋ฅผ ์ œ๊ณตํ•ด์•ผ ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ธฐ์‚ฌ ์ „์— ์š”์•ฝ ์ž‘์—…์„ ๋”์šฑ ์ž์„ธํžˆ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค.

 

์ž์—ฐ์–ด๋กœ ๋ชจ๋ธ์ด ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ์ž‘์—…์„ ํ˜•์„ฑํ•˜๋ฉด ์ฒ˜๋ฆฌํ•˜๋ ค๋Š” input text ์ „ํ›„์— text๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Œ

 

 ๋ชจ๋ธ์ด ํŠน์ • ์งˆ๋ฌธ๊ณผ ์š”์ฒญ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์˜ˆ๋ฅผ fine-tuningํ•˜์—ฌ ์ด๋ฅผ ๋”์šฑ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค.

 

4. model์—๊ฒŒ ๋ณด๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์„ ์•Œ๋ ค์ฃผ๊ธฐ

 

prompt์— example์„ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ์€ ์ข‹์€ ์ƒ์„ฑ์„ ์–ป๊ธฐ ์œ„ํ•œ ์ค‘์š”ํ•œ ๋ฐฉ๋ฒ•. example์ด model์—๊ฒŒ ์–ป๊ณ ์ž ํ•˜๋Š” target output์„ ์•Œ๋ ค์คŒ.

 

 ์›ํ•˜๋Š” ์ƒ์„ฑ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ๋ช‡ ๊ฐœ์˜ example์„ ์ฃผ์–ด์„œ ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์„ few-shot learning์ด๋ผ๊ณ  ํ•œ๋‹ค. Few-shot generation์€ larger model์—์„œ ๋”์šฑ ์ž˜ ์ž‘๋™ํ•œ๋‹ค. likelihood endpoint๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ example์— ์ œ๊ณต๋œ ์ •๋‹ต์— ๋Œ€ํ•ด ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ๋ถˆํ™•์‹คํ•œ์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. 

 

 

p.s.

์•„์ง ์ œ๋Œ€๋กœ ์ดํ•ดํ•˜์ง€ ๋ชปํ•œ ๋ถ€๋ถ„์ด ๋งŽ์•„ ์ถ”ํ›„์— ๋” ํ•™์Šต ํ›„ ์ข€ ๋” ์ˆ˜์ •ํ•ด๋ณด๋„๋ก ํ•˜๊ฒ ๋‹ค.

 

 

 

 

์ถœ์ฒ˜

https://seongjin.me/prompt-engineering-in-chatgpt/

 

ChatGPT๋ฅผ ๋น„๋กฏํ•œ ๋Œ€ํ™”ํ˜• AI ์„œ๋น„์Šค์—์„œ ๋” ์ข‹์€ ๊ฒฐ๊ณผ๋ฌผ์„ ์–ป๊ฒŒ ํ•ด์ฃผ๋Š” ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง (Prompt

๋Œ€ํ™”ํ˜• ์ธ๊ณต์ง€๋Šฅ์ด ์ƒ์„ฑํ•˜๋Š” ๊ฒฐ๊ณผ๋ฌผ์˜ ํ’ˆ์งˆ์„ ๋†’์ด๋Š” ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง(Prompt Engineering)์„ ์†Œ๊ฐœํ•œ๋‹ค. ํ”„๋กฌํ”„ํŠธ(Prompt)๋ž€ ๋ฌด์—‡์ธ๊ฐ€, ์™œ ์ด๊ฒƒ์˜ ์˜ฌ๋ฐ”๋ฅธ ์—”์ง€๋‹ˆ์–ด๋ง์ด ํ•„์š”ํ•œ๊ฐ€๋ฅผ ์•Œ์•„๋ณด๊ณ , ChatGPT

seongjin.me

https://docs.cohere.ai/docs/prompt-engineering?ref=context-by-cohere 

 

Prompt Engineering

Use the API to generate completions, distill text into semantically meaningful vectors, and more. Get state-of-the-art natural language processing without the need for expensive supercomputing infrastructure.

docs.cohere.ai

 

'Paper Reading ๐Ÿ“œ > Deep Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

Zero-shot, One-shot, Few-shot Learning์ด ๋ฌด์—‡์ผ๊นŒ?  (3) 2023.03.12
LSTM vs GRU ๋ญ๊ฐ€ ๋” ๋‚˜์„๊นŒ?: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ  (1) 2023.01.30
์•Œ๊ธฐ ์‰ฝ๊ฒŒ LSTM networks ์ดํ•ดํ•˜๊ธฐ  (2) 2023.01.27
Distilling the Knowledge in a Neural Network ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ  (0) 2023.01.26
CNN network์˜ ์—ญ์‚ฌ  (0) 2022.12.14
'Paper Reading ๐Ÿ“œ/Deep Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
  • Zero-shot, One-shot, Few-shot Learning์ด ๋ฌด์—‡์ผ๊นŒ?
  • LSTM vs GRU ๋ญ๊ฐ€ ๋” ๋‚˜์„๊นŒ?: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ
  • ์•Œ๊ธฐ ์‰ฝ๊ฒŒ LSTM networks ์ดํ•ดํ•˜๊ธฐ
  • Distilling the Knowledge in a Neural Network ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ
Cartinoe
Cartinoe
Welcome! I'm a student studying about deep learning(NLP) ๐Ÿ˜‰ The goal of my study is to develop a competent LLM helping people!
  • faviconinstagram
  • faviconfacebook
  • favicongithub
  • faviconLinkedIn
Cartinoe's paper review
Cartinoe
Cartinoe
Cartinoe's paper review
Cartinoe
์ „์ฒด
์˜ค๋Š˜
์–ด์ œ
  • My Posting (141)
    • Paper Reading ๐Ÿ“œ (113)
      • Natural Language Processing (67)
      • Alignment Problem of LLM (11)
      • Computer Vision (4)
      • Deep Learning (6)
      • multimodal models (17)
      • Mathematics(์„ ํ˜•๋Œ€์ˆ˜, ํ™•๋ฅ ๊ณผ ํ†ต๊ณ„, ๋ฏธ.. (8)
    • Lecture ๐Ÿง‘โ€๐Ÿซ (16)
      • Hugging Face Course (1)
      • Coursera (15)
    • Insight ๐Ÿ˜Ž (10)
    • Research & Project ๐Ÿ”ฌ (2)

์ธ๊ธฐ ๊ธ€

์ตœ๊ทผ ๊ธ€

๊ณต์ง€์‚ฌํ•ญ

  • ๋ธ”๋กœ๊ทธ ๊ณต์ง€์‚ฌํ•ญ - ๋ชจ๋ฐ”์ผ ์ˆ˜์‹ ๊นจ์ง

ํƒœ๊ทธ

  • Open-source
  • ChatGPT
  • transformer
  • open-source model
  • MT-Bench
  • LLM
  • LLAMA2
  • Evaluation Metric
  • RLHF
  • proprietary model
  • Vicuna Evaluation
  • context length
  • scaling law
  • GPT-4
  • context window
  • closed-source model
  • LM
  • Chinchilla
  • Vicuna
  • closed-source
hELLO ยท Designed By ์ •์ƒ์šฐ.
Cartinoe
Prompt Engineering์ด ๋ฌด์—‡์ผ๊นŒ?
์ƒ๋‹จ์œผ๋กœ

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”

๊ฐœ์ธ์ •๋ณด

  • ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ
  • ํฌ๋Ÿผ
  • ๋กœ๊ทธ์ธ

๋‹จ์ถ•ํ‚ค

๋‚ด ๋ธ”๋กœ๊ทธ

๋‚ด ๋ธ”๋กœ๊ทธ - ๊ด€๋ฆฌ์ž ํ™ˆ ์ „ํ™˜
Q
Q
์ƒˆ ๊ธ€ ์“ฐ๊ธฐ
W
W

๋ธ”๋กœ๊ทธ ๊ฒŒ์‹œ๊ธ€

๊ธ€ ์ˆ˜์ • (๊ถŒํ•œ ์žˆ๋Š” ๊ฒฝ์šฐ)
E
E
๋Œ“๊ธ€ ์˜์—ญ์œผ๋กœ ์ด๋™
C
C

๋ชจ๋“  ์˜์—ญ

์ด ํŽ˜์ด์ง€์˜ URL ๋ณต์‚ฌ
S
S
๋งจ ์œ„๋กœ ์ด๋™
T
T
ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ ์ด๋™
H
H
๋‹จ์ถ•ํ‚ค ์•ˆ๋‚ด
Shift + /
โ‡ง + /

* ๋‹จ์ถ•ํ‚ค๋Š” ํ•œ๊ธ€/์˜๋ฌธ ๋Œ€์†Œ๋ฌธ์ž๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํ‹ฐ์Šคํ† ๋ฆฌ ๊ธฐ๋ณธ ๋„๋ฉ”์ธ์—์„œ๋งŒ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.