Paper Reading ๐Ÿ“œ/Natural Language Processing

์ค‘์š”ํ•œ ๊ฑด ๊บพ์ด์ง€ ์•Š๋Š” high-quality data!! - Koala๐Ÿจ: A Dialogue Model for Academic Research ๋ฆฌ๋ทฐ

Cartinoe 2023. 6. 19. 09:37

 
 

๊ทธ๋ฆผ 1. Koala ๋ชจ๋ธ ๊ฐœ์š”

Koala Overview


Koala๋ฅผ ์†Œ๊ฐœํ•˜๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” ์›น์œผ๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘๋œ ๋Œ€ํ™” ๋ฐ์ดํ„ฐ์—์„œ Meta์˜ LLaMA๋ฅผ fine-tuning ํ•จ์œผ๋กœ์จ ํ•™์Šต๋œ ์ฑ—๋ด‡์ธ Koala๋ฅผ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ์…‹ curation๊ณผ training process๋ฅผ ์„ค๋ช…ํ•˜๊ณ  Koala์™€ ChatGPT, Alpaca์™€ ๋น„๊ตํ•˜๋Š” ์‚ฌ์šฉ์ž ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ ๋˜ํ•œ ๋ณด์—ฌ์คฌ๋‹ค. Koala์˜ ๊ฒฐ๊ณผ๋Š” Koala๊ฐ€ ๋‹ค์–‘ํ•œ ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ์— ํšจ๊ณผ์ ์œผ๋กœ ์‘๋‹ตํ•  ์ˆ˜ ์žˆ๊ณ , ์‘๋‹ต ์ƒ์„ฑ๋„ Alpaca๋ณด๋‹ค ๋” ์„ ํ˜ธ๋˜์—ˆ๊ณ , ์ ˆ๋ฐ˜์ด ๋„˜๋Š” ๊ฒฝ์šฐ์— ์ตœ์†Œํ•œ ChatGPT์™€ ํƒ€์ด๋ฅผ ์ด๋ฃจ๋Š” ๋ชจ์Šต์„ ๋ณด์—ฌ์คฌ๋‹ค.

์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์ถฉ๋ถ„ํžˆ ์ž‘์€ ๋ชจ๋ธ๋„ ์‹ ์ค‘ํ•˜๊ฒŒ ๋ชจ์—ฌ์ง„ ๋ฐ์ดํ„ฐ์—์„œ ํ•™์Šต๋˜๋ฉด ์ด ๋ชจ๋ธ๋“ค์˜ ํฐ cousin ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋งŽ์ด ์บก์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๊ฒƒ์€ ์ปค๋ฎค๋‹ˆํ‹ฐ๊ฐ€ high-quality ๋ฐ์ดํ„ฐ์…‹์„ curating ํ•˜๋Š”๋ฐ ๋” ๋งŽ์€ ๋…ธ๋ ฅ์„ ์Ÿ๋Š” ๊ฒƒ์ด ๊ธฐ์กด ์‹œ์Šคํ…œ์˜ ์‚ฌ์ด์ฆˆ๋ฅผ ๋Šฅ๊ฐ€ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์•”์‹œํ•œ๋‹ค. ๊ทธ๋ ‡์ง€๋งŒ Koala๋Š” ์•„์ง ํ”„๋กœํ† ํƒ€์ž…์ธ๋ฐ, ์ด๋Š” content, safety, reliability ์ธก๋ฉด์—์„œ ์ฃผ์š”ํ•œ ๋ช‡ ๊ฐ€์ง€์˜ ๋‹จ์ ๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

System Overview

open-source ๋ชจ๋ธ์€ closed-source ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ๋งž๋จน์„ ์ˆ˜ ์—†๋‹ค. ๊ทธ์น˜๋งŒ ์‹ ์ค‘ํ•˜๊ฒŒ ์„ ํƒ๋œ training data์˜ ์‚ฌ์šฉ์€ ์ด๋“ค์˜ ์„ฑ๋Šฅ์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ค€๋‹ค. Alpaca์—์„œ๋„ ์˜ฌ๋ฐ”๋ฅธ ๋ฐ์ดํ„ฐ๋Š” smaller open-source ๋ชจ๋ธ์„ ์ƒ๋‹นํžˆ ๊ฐœ์„ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•œ๋‹ค.

์ด ํฌ์ŠคํŠธ์—๋Ÿฌ๋Š” ์ด๋Ÿฌํ•œ ๋…ผ์˜์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ์ฆ๊ฑฐ๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ชจ๋ธ์ธ โ€˜Koalaโ€™๋ฅผ ์†Œ๊ฐœํ•˜์˜€๋‹ค. Koala๋Š” ์ž์œ ๋กญ๊ฒŒ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์›น์—์„œ ์ˆ˜์ง‘๋œ ์ƒํ˜ธ์ž‘์šฉ ๋ฐ์ดํ„ฐ์—์„œ fine-tune ๋˜์—ˆ์ง€๋งŒ, ๋งค์šฐ ์œ ๋Šฅํ•œ closed model๊ณผ ํ•จ๊ป˜ํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ํฌํ•จํ•˜๋Š” ๋ฐ์ดํ„ฐ์— ๊ตฌ์ฒด์ ์œผ๋กœ ์ง‘์ค‘ํ•˜๊ธฐ๋„ ํ–ˆ๋‹ค. LLaMA base model์„ ์›น์—์„œ ์ˆ˜์ง‘๋œ ๋Œ€ํ™” ๋ฐ์ดํ„ฐ์™€ ๊ณต๊ณต ๋ฐ์ดํ„ฐ์…‹๋ฟ๋งŒ ์•„๋‹ˆ๋ผ question answering ๋ฐ์ดํ„ฐ์…‹๊ณผ human feedback ๋ฐ์ดํ„ฐ์…‹์—์„œ๋„ fine-tune ํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ํ•ด์„œ ๋‚˜์˜จ ๋ชจ๋ธ์ธ Koala-13B๋Š” human evaluation์— ์˜ํ•ด ๊ธฐ์กด ๋ชจ๋ธ์— ๋น„ํ•ด ์œ ๋งํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.

์ด ๊ฒฐ๊ณผ๋Š” high-quality ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ๋ถ€ํ„ฐ์˜ ํ•™์Šต์ด smaller model์˜ ์•ฝ์ ๋“ค์„ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ–ฅํ›„์— ๊ฑฐ๋Œ€ closed-source ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ๊ณผ๋„ ๋งž์ถฐ์งˆ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ๋„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‹ค์Œ์˜ ํ‘œ 1์€ Koala์™€ ๋‹ค๋ฅธ ๊ธฐ์กด ๋ชจ๋ธ๋“ค ๊ฐ„์˜ ์ฐจ์ด์˜ ๊ฐœ์š”๋ฅผ ์ œ๊ณตํ•ด ์ค€๋‹ค.
 

ํ‘œ 1. Alpaca, ChatGPT, Koala์˜ ๋น„๊ต


Dataset & Training

๋Œ€ํ™” ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š”๋ฐ ๊ฐ€์žฅ ํฐ ์–ด๋ ค์›€์€ training data๋ฅผ curateํ•˜๋Š” ๊ฒƒ์ด๋‹ค. Koala๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์›น๊ณผ ๊ณต๊ณต ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ๋ถ€ํ„ฐ ๋Œ€ํ™” ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ training set๋ฅผ curate ํ•˜์˜€๋‹ค. ์ด ๋ฐ์ดํ„ฐ๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ์˜จ๋ผ์ธ์— ์˜ฌ๋ฆฐ LLM์˜ ๋Œ€ํ™”๋ฅผ ํฌํ•จํ•œ๋‹ค.

์ตœ๋Œ€ ๊ฐ€๋Šฅํ•œ ์›น ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•จ์œผ๋กœ์จ ์–‘์„ ์ตœ๋Œ€ํ™”ํ•˜๊ธฐ๋ณด๋‹ค, ์ž‘์ง€๋งŒ high-quality ๋ฐ์ดํ„ฐ์…‹์„ ์ˆ˜์ง‘ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋‘์—ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด QA, human feedback, LM๊ณผ์˜ ๋Œ€ํ™”์— ๋Œ€ํ•œ ๊ณต๊ณต ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์•„๋ž˜์—์„œ ๋ฐ์ดํ„ฐ์…‹์˜ ๊ตฌ์ฒด์ ์ธ ๋””ํ…Œ์ผ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ฒ ๋‹ค.

ChatGPT Distillation Data

  • Public User-shared Dialogue with ChatGPT(ShareGPT): ์‚ฌ์šฉ์ž๋“ค์— ์˜ํ•ด ๊ณต์œ ๋œ 60K ๊ฐœ์˜ ๋Œ€ํ™”
  • Human ChatGPT Comparison Corpus(HC3): 24K ๊ฐœ์˜ question์— ๋Œ€ํ•œ 60K human answer+27K ChatGPT answer


Open Source Data

  • Open Instruction Generalist(OIG): OIG ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ๋ถ€ํ„ฐ ์†์ˆ˜ ์„ ํƒ๋œ ์š”์†Œ์˜ ์„œ๋ธŒ์…‹
  • Stanford Alpaca: Alpaca ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š”๋ฐ ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์…‹
  • Anthropic HH: ๋ชจ๋ธ outpyt์˜ harmful & helpfulness์˜ ์‚ฌ๋žŒ ํ‰๊ฐ€๋ฅผ ํฌํ•จํ•˜๋Š” ๋ฐ์ดํ„ฐ์…‹
  • OpenAI WebGPT: question, ๋ชจ๋ธ ์‘๋‹ต ์Œ, ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋กœ ๊ตฌ์„ฑ๋œ ๊ฐ example ๊ฐ„์˜ 20K ๋น„๊ต
  • OpenAI Summarization: ๊ฐ example์€ ๋ชจ๋ธ์— ์˜ํ•ด ์ƒ์„ฑ๋œ ์š”์•ฝ์— ๋Œ€ํ•œ ์‚ฌ๋žŒ์˜ ํ”ผ๋“œ๋ฐฑ์œผ๋กœ ๊ตฌ์„ฑ๋œ 93K ๊ฐœ์˜ example์„ ํฌํ•จํ•˜๋Š” ๋ฐ์ดํ„ฐ์…‹


 

๊ทธ๋ฆผ 2. Alpaca, Koala์— ๋Œ€ํ•œ human preference ๊ฒฐ๊ณผ

Preliminary Evaluation

์‹คํ—˜์—์„œ๋Š” 2๊ฐœ์˜ ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ–ˆ๋‹ค: distillation data๋งŒ ์“ด Koala-Distill๊ณผ distillation๊ณผ open-source ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•˜๋Š” Koala-All. ์ด ์‹คํ—˜์˜ ๋ชฉํ‘œ๋Š” ์ด ๋ชจ๋ธ๋“ค์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๊ณ  distillation๊ณผ open-source ๋ฐ์ดํ„ฐ์…‹์ด ์ตœ์ข… ์„ฑ๋Šฅ์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ฐ ๋ชจ๋ธ๋“ค์„ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด human evaluation์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ๊ฐ€ ์œ„์˜ ๊ทธ๋ฆผ 2์— ๋‚˜ํƒ€๋‚˜ ์žˆ๋‹ค. Stanford Alpaca์—์„œ ์‚ฌ์šฉ๋œ 180๊ฐœ์˜ test query๋กœ ๊ตฌ์„ฑ๋œ ์„ธํŠธ์™€ Koala๋งŒ์˜ ํ…Œ์ŠคํŠธ์…‹์ธ Koala Test Set์—์„œ ํ‰๊ฐ€ํ•˜์˜€๋‹ค.

๋”์šฑ ์‚ฌ์‹ค์ ์ธ ํ‰๊ฐ€ ํ”„๋กœํ† ์ฝœ์„ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•ด ์˜จ๋ผ์ž„์ด ํฌ์ŠคํŠธ ๋œ 180๊ฐœ์˜ ์‹ค์ œ ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ๋กœ ๊ตฌ์„ฑ๋œ Koala Test Set์„ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ํ† ํ”ฝ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๊ณ , ๊ตฌ์–ด์ฒด์ ์ด๊ณ , ์ฑ„ํŒ… ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์˜ ์‹ค์ œ ์‚ฌ์šฉ ์‚ฌ๋ก€๋ฅผ ๋” ์ž˜ ๋Œ€ํ‘œํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค. ๊ฐ€๋Šฅํ•œ test-set ๋ˆ„์ˆ˜๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด training set์˜ example๊ณผ 20% ์ด์ƒ์˜ BLEU score๋ฅผ ๊ฐ€์ง€๋Š” ์ฟผ๋ฆฌ๋Š” ํ•„ํ„ฐ๋งํ•ด ๋ƒˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ rater๋“ค์—๊ฒŒ ์‹ ๋ขฐ๋„ ์žˆ๊ฒŒ ํ‰๊ฐ€๋  ์ˆ˜ ์—†๋Š” ์ฟผ๋ฆฌ์— ๋Œ€ํ•œ ๋น„์˜์–ด ๋ฐ ์ฝ”๋”ฉ ๊ด€๋ จ ์‘๋‹ต์€ ์ œ๊ฑฐํ–ˆ๋‹ค.

์ด 2๊ฐ€์ง€ ํ‰๊ฐ€ ์„ธํŠธ์™€ ํ•จ๊ป˜ ๋ชจ๋ธ์˜ ํ€„๋ฆฌํ‹ฐ๋ฅผ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•ด ๊ฑฐ์˜ 100๋ช…์˜ ํ‰๊ฐ€์ž๋“ค์—๊ฒŒ ๋ฌผ์–ด๋ด„์œผ๋กœ์จ ๋ธ”๋ผ์ธ๋“œ ์Œ๋ณ„ ๋น„๊ต๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ‰๊ฐ€ ์‹œ์— ๊ฐ ํ‰๊ฐ€์ž๋“ค์—๊ฒŒ input prompt์™€ 2๊ฐœ์˜ ๋ชจ๋ธ์˜ output์„ ์ฃผ์—ˆ๋‹ค. ๊ทธ๋‹ค์Œ์— ์‘๋‹ต ํ€„๋ฆฌํ‹ฐ์™€ ์ •ํ™•๋„์™€ ์—ฐ๊ด€๋œ ๊ธฐ์ค€์„ ์‚ฌ์šฉํ•ด์„œ ์–ด๋–ค output์ด ๋” ๋‚˜์€์ง€ ํ‰๊ฐ€ํ•˜๋„๋ก ๋ฌผ์–ด๋ดค๋‹ค.

Alpaca ํ…Œ์ŠคํŠธ ์…‹์—์„œ Koala-All์€ Alpaca์— ์ค€ํ•˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์คฌ๋‹ค. ํ•˜์ง€๋งŒ ์ œ์•ˆ๋œ test set์—์„œ ์ ˆ๋ฐ˜์— ๊ฐ€๊นŒ์šด ๊ฒฝ์šฐ์— Koala-All์€ Alpaca๋ณด๋‹ค ๋” ๋‚ซ๋‹ค๊ณ  ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‘˜ ๋ชจ๋‘์˜ ๊ฒฝ์šฐ์— 70% ์ด์ƒ์˜ ๊ฒฝ์šฐ์— Alpaca๋ณด๋‹ค ๋‚ซ๊ฑฐ๋‚˜ ํƒ€์ด๋ฅผ ์ด๋ฃจ๋Š” ๋ชจ์Šต์„ ๋ณด์—ฌ์คฌ๋‹ค. ๋ฌผ๋ก  Koala test set์˜ ๋” ๋งŽ์€ ๋Œ€ํ™”ํ˜• prompt๋Š” Koala training set๊ณผ ๋” ์œ ์‚ฌํ•˜๋ฏ€๋กœ ์ด๋Š” ๋†€๋ž์ง€ ์•Š์ง€๋งŒ, ์ด๋Ÿฌํ•œ prompt๊ฐ€ ํ•ด๋‹น ๋ชจ๋ธ์˜ downstream ์‚ฌ์šฉ ์‚ฌ๋ก€์™€ ๋” ์œ ์‚ฌํ•˜๋‹ค๋Š” ์ ์—์„œ ์ด๋Š” Koala๊ฐ€ ์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Š” assistant์™€ ๊ฐ™์€ ์‘์šฉ์—์„œ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•œ๋‹ค. ์ด๊ฒƒ์€ ์›น์—์„œ ์‚ฌ์šฉ์ž๋“ค์— ์˜ํ•ด ํฌ์ŠคํŠธ ๋œ example๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง„ LLM ์ƒํ˜ธ์ž‘์šฉ ๋ฐ์ดํ„ฐ๋Š” ํšจ๊ณผ์ ์ธ instruction ์‹คํ–‰ ๋Šฅ๋ ฅ์„ ์œ„ํ•œ ํšจ๊ณผ์ ์ธ ์ „๋žต์ด๋ผ๋Š” ๊ฒƒ์„ ์ฃผ์žฅํ•œ๋‹ค.

์‚ด์ง ๋†€๋ž๊ฒŒ๋„ open-source data + distillation data(Koala-All)์—์„œ์˜ ํ•™์Šต์€ ๊ทธ์ € ChatGPT distillation data(Koala-Distill)์—์„œ์˜ ํ•™์Šต๋ณด๋‹ค ์‚ด์ง ์•ˆ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์คฌ๋‹ค. ์ฐจ์ด๋Š” ๊ทธ๋ฆฌ ํฌ์ง€ ์•Š์•˜์ง€๋งŒ, ์ด๋Š” high-quality์˜ ChatGPT ๋Œ€ํ™” ๋ฐ์ดํ„ฐ์— ๋‘ ๋ฐฐ ๋” ๋งŽ์€ ์–‘์˜ open-source data๋ฅผ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ์€ ์ƒ๋‹นํ•œ ๊ฐœ์„ ์„ ์ด๋Œ์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ํšจ๊ณผ์ ์ธ instruction๊ณผ assistant ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฐ•๋ ฅํ•œ ๋Œ€ํ™” ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š”๋ฐ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๊ธฐ์กด ๋ฐ์ดํ„ฐ์…‹์„ ๊ฐ„๋‹จํ•˜๊ฒŒ ์žฌํฌ๋งท ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ์— ๋‹ค์–‘ํ•œ high-quality ๋Œ€ํ™” ๋ฐ์ดํ„ฐ๋ฅผ curate ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ๋งํ•œ๋‹ค.

Limitations & Safety

๋‹ค๋ฅธ LM๊ณผ ๊ฐ™์ด Koala๋Š” ์ž˜๋ชป ์‚ฌ์šฉ๋์„ ๋•Œ ํ•ด๋กœ์šธ ์ˆ˜ ์žˆ๊ณ  ์ œ์•ฝ์„ ๊ฐ€์ง„๋‹ค. Koala๋Š” ์‚ฌ์‹ค์„ฑ ์—†๋Š” ์‘๋‹ต์„ ๋งค์šฐ ์ž์‹ ๊ฐ ์žˆ๋Š” ์–ด์กฐ๋กœ hallucinateํ•˜๊ณ  ์ƒ์„ฑํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ์ด๊ฒƒ์€ smaller model์ด larger model๊ณผ ๋˜‘๊ฐ™์€ ์ˆ˜์ค€์˜ ์‚ฌ์‹ค์„ฑ์„ ๊ฐ€์ง€์ง€ ๋ชปํ•˜๊ณ , ๊ทธ์ € ์ž์‹ ๊ฐ ์žˆ๋Š” ์Šคํƒ€์ผ์„ ์ƒ์†๋ฐ›์€ ์•ˆ ์ข‹์€ ์˜ํ–ฅ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  hallucinated ์‘๋‹ต์ด ์ž˜๋ชป ์‚ฌ์šฉ๋์„ ๋•Œ ์ž˜๋ชป๋œ ์ •๋ณด๋ฅผ ํผ๋œจ๋ฆฌ๋Š” ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚ฌ ์ˆ˜๋„ ์žˆ๋‹ค.

Koala๋Š” ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์ž์‹ ๊ฐ ์žˆ๋Š” ์–ด์กฐ๋กœ hallucinate ํ•  ์ˆ˜ ์žˆ๋‹ค. Koala๋Š” ๋‹ค๋ฅธ ์ฑ—๋ด‡ LM์ด ๊ฐ€์ง€๋Š” ๋‹ค์Œ์˜ ์•ฝ์ ๋“ค์€ ๊ณต์œ ํ•œ๋‹ค.

  • Biases & Stereotypes
  • Commonsense์˜ ๋ถ€์กฑ
  • Limited Understanding


Koala๋ฅผ ์•ˆ์ „ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด, ๋ชจ๋ธ์ด ๋”์šฑ robustํ•˜๊ณ  harmless ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•˜ ShareGPT์™€ Anthropic HH๋กœ๋ถ€ํ„ฐ ๊ณต๊ฒฉ์ ์ธ prompt๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค.

 
 
 
 
 
์ถœ์ฒ˜
https://bair.berkeley.edu/blog/2023/04/03/koala/

 

Koala: A Dialogue Model for Academic Research

The BAIR Blog

bair.berkeley.edu