Lecture ๐Ÿง‘‍๐Ÿซ/Coursera

Lecture ๐Ÿง‘‍๐Ÿซ/Coursera

[Machine Learning] Multivariate Linear Regression

Multiple Features ์—ฌ๋Ÿฌ ๋ณ€์ˆ˜๋“ค์„ ์ด์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€๋ฅผ "multivariate linear regression"์ด๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ์ด์ œ ์ž…๋ ฅ ๋ณ€์ˆ˜๋ฅผ ์–ผ๋งˆ๋“ ์ง€ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์ •์‹์— ๋Œ€ํ•œ ํ‘œ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•˜๋„๋ก ํ•˜๊ฒ ๋‹ค. hypothesis function์˜ ๋‹ค๋ณ€์ˆ˜ ํ˜•ํƒœ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์—ฌ๋Ÿฌ feature๋“ค์„ ์ˆ˜์šฉํ•œ๋‹ค. $h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \cdots + \theta_{n}x_{n}$ ์œ„ ์ˆ˜์‹์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋•๊ธฐ ์œ„ํ•ด ์ง‘ ๊ฐ€๊ฒฉ ์˜ˆ ์˜ˆ์‹œ๋ฅผ ์ ์šฉํ•ด๋ณด๋ฉด, $\theta_{0}$์€ ์ผ๋ฐ˜์ ์ธ ์ง‘ ๊ฐ€๊ฒฉ, $\theta_{1}$์€ ์ œ๊ณฑ ๋ฏธํ„ฐ ๋‹น ๊ฐ€๊ฒฉ, $\theta_{2}$์€ ์ธต ์ˆ˜ ๋‹น ..

Lecture ๐Ÿง‘‍๐Ÿซ/Coursera

[Machine Learning] Parameter Learning - Gradient Descent

Gradient Descent ์ด์ œ hypothesis function๊ณผ ์ด ํ•จ์ˆ˜๊ฐ€ ๋ฐ์ดํ„ฐ์— ์–ผ๋งˆ๋‚˜ ์ž˜ ๋งž๋Š”์ง€ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•๋„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด์ œ hypothesis function์—์„œ์˜ parameter๋ฅผ ์ธก์ •ํ•ด์•ผ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์ด ๋“ฑ์žฅํ•˜๊ฒŒ ๋œ๋‹ค. $\theta_{0}$๊ณผ $\theta_{1}$์— ๊ธฐ๋ฐ˜ํ•ด์„œ hypothesis function์˜ ๊ทธ๋ž˜ํ”„๋ฅผ ์ƒ์ƒํ•ด๋ณด๋„๋ก ํ•˜์ž. $x$์™€ $y$ ์ž์ฒด๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ํ‘œ์‹œํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ hypothesis function์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ฒ”์œ„์™€ ํŠน์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ง‘ํ•ฉ์„ ์„ ํƒํ•ด์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์šฉ์„ ๊ทธ๋ž˜ํ”„๋กœ ํ‘œ์‹œํ•œ๋‹ค. $\theta_{0}$์„ $x$์ถ•, $\theta_{1}$์„ $y$์ถ•, cost function์„ ์ˆ˜์ง $z$์ถ•์œผ๋กœ ๋‘์–ด๋ณด์ž. ๊ทธ๋ž˜ํ”„์˜ ์ ์€ ํŠน์ • $\t..

Lecture ๐Ÿง‘‍๐Ÿซ/Coursera

[Machine Learning] Model & Cost Function

Model Representation ์•ž์œผ๋กœ ์‚ฌ์šฉ๋  ๊ฒฝ์šฐ๋ฅผ ์œ„ํ•ด, ๋ช‡ ๊ฐ€์ง€ ๊ธฐํ˜ธ๋“ค์„ ์ •์˜ํ•˜๊ณ  ๋„˜์–ด๊ฐ€๋„๋ก ํ•˜์ž. $x^{(i)}$๋Š” ์ž…๋ ฅ ๋ณ€์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ , ์ž…๋ ฅ ํŠน์ง•์ด๋ผ๊ณ ๋„ ๋ถ€๋ฅธ๋‹ค. $y^{(i)}$๋Š” ์ถœ๋ ฅ ๋˜๋Š” ํƒ€๊ฒŸ ๋ณ€์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ , ์ด ๊ฐ’์ด ์šฐ๋ฆฌ๊ฐ€ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฐ’์ด๋‹ค. $(x^{(i)}, y^{(i)})$ ์Œ์€ ํ•™์Šต ์˜ˆ์‹œ๋ผ๊ณ  ๋ถ€๋ฅด๊ณ , ์ด ๋ฐ์ดํ„ฐ์…‹์€ ํ•™์Šตํ•  ๋•Œ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  m๊ฐœ ํ•™์Šต ์˜ˆ์‹œ๋กœ ์ด๋ฃจ์–ด์ง„ ๋ฆฌ์ŠคํŠธ $(x^{(i)}, y^{(i)}); i=1, ..., m$์„ training set์ด๋Ÿฌ๊ณ  ๋ถ€๋ฅธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๋ชจ๋“  ๊ธฐํ˜ธ์—์„œ ๋“ฑ์žฅํ•œ "$i$"๋Š” training set์˜ ์ธ๋ฑ์Šค์ผ ๋ฟ, ์ง€์ˆ˜์˜ ์—ญํ• ์„ ํ•˜์ง€ ์•Š๋Š”๋‹ค! ๐Ÿ™… ๋˜ํ•œ, $X$๋Š” ์ž…๋ ฅ ๋ณ€์ˆ˜๋“ค์˜ ๊ณต๊ฐ„์„, $Y$๋Š” ์ถœ๋ ฅ ๋ณ€์ˆ˜๋“ค์˜ ๊ณต๊ฐ„์„ ๋‚˜ํƒ€๋‚ธ๋‹ค..

Lecture ๐Ÿง‘‍๐Ÿซ/Coursera

[Machine Learning] What is Machine Learning? - Supervised Learning & Unsupervised Learning

What is Machine Learning? machine learning์˜ ์ •์˜์— ๋Œ€ํ•ด์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ž…์žฅ์ด ์ฃผ์žฅ๋˜์—ˆ๋‹ค. Arthur Samuel์— ์˜ํ•˜๋ฉด Machine Learning์€ "์ปดํ“จํ„ฐ์—๊ฒŒ ๋ช…ํ™•ํ•œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์—†์ด ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ์ฃผ๋Š” ๋ถ„์•ผ" ๋ผ๊ณ  ๋ฌ˜์‚ฌํ•œ๋‹ค. ์ด ์ฃผ์žฅ์€ ์˜ค๋ž˜ ๋˜์—ˆ๊ณ , ๋น„๊ณต์‹์ ์ธ ์ •์˜์ด๋‹ค. ๐Ÿ˜… Tom Mitchell์€ ๋”์šฑ ํ˜„๋Œ€์ ์ธ ์ •์˜๋ฅผ ์ œ๊ณตํ•˜์˜€๋‹ค: "์ปดํ“จํ„ฐ ํ”„๋กœ๊ทธ๋žจ์€ ๋ช‡๋ช‡ task $T$์˜ ํด๋ž˜์Šค์— ๊ด€ํ•œ ๊ฒฝํ—˜ $E$์™€ ์„ฑ๋Šฅ ์ง€ํ‘œ $P$๋กœ๋ถ€ํ„ฐ ํ•™์Šต๋˜์„œ, task $T$์—์„œ์˜ ์„ฑ๋Šฅ์€ $P$์— ์˜ํ•ด ์ธก์ •๋˜๊ณ , ๊ฒฝํ—˜ $E$๋กœ ํ–ฅ์ƒ๋œ๋‹ค." ์ฒด์ปค๋ฅผ ์˜ˆ๋กœ ๋“ค์–ด์„œ ์„ค๋ช…ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. $E$: ๋งŽ์€ ์ฒด์ปค ๊ฒŒ์ž„ ํ”Œ๋ ˆ์ด ๊ฒฝํ—˜ $T$: ์ฒด์ปค๋ฅผ ํ”Œ๋ ˆ์ดํ•˜๋Š” task $P$: ํ”„๋กœ๊ทธ๋žจ์ด ๋‹ค์Œ..

Lecture ๐Ÿง‘‍๐Ÿซ/Coursera

Stanford University Machine Learning ๊ฐ•์˜(Andrew Ng)

๋จธ์‹ ๋Ÿฌ๋‹ ๊ฐ•์˜์˜ ๋Œ€๋ช…์‚ฌ๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๊ฐ•์˜์ธ Andrew Ng์˜ Machine Learning ๊ฐ•์˜๋ฅผ ๋“ค์œผ๋ฉด์„œ ์ •๋ฆฌํ•œ ๋‚ด์šฉ๋“ค๋กœ ํฌ์ŠคํŠธ๋ฅผ ์ž‘์„ฑํ•˜์˜€๋‹ค. ์ˆœ์ „ํžˆ ํ•™์Šต์šฉ์œผ๋กœ ์ž‘์„ฑํ•œ ๋‚ด์šฉ์ด๋ผ ๋ถ€์กฑํ•œ ๋‚ด์šฉ์ด ์žˆ์„ ์ˆ˜๋„ ์žˆ๋Š”๋ฐ, ์ด๋Ÿฐ ์ ์— ๋Œ€ํ•œ ์ง€์ ์€ ์–ธ์ œ๋“  ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค!! ๐Ÿค— Coursera์—์„œ ์šด์˜ํ•˜๋Š” ์ด ๊ฐ•์˜๋Š” ๋ฌด๋ฃŒ๋กœ ์ง„ํ–‰๋˜๋ฉฐ, ์–‘์งˆ์˜ ์ •๋ณด๋“ค์„ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋ž˜์„œ ํ•œ ๋ฒˆ ์‹œ๊ฐ„์ด ๋‚˜๋ฉด ์ง์ ‘ ๊ณต๋ถ€ํ•ด๋ณด๊ธฐ๋ฅผ ์ ๊ทน ๊ถŒ์žฅํ•œ๋‹ค. ๊ฐ•์˜์˜ ๋งํฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๊ฐ•์˜ ๋งํฌ: https://www.coursera.org/learn/machine-learning?action=enroll Supervised Machine Learning: Regression and Classification In the first course of the ..

Cartinoe
'Lecture ๐Ÿง‘‍๐Ÿซ/Coursera' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (2 Page)