Paper Reading ๐Ÿ“œ/Natural Language Processing

Paper Reading ๐Ÿ“œ/Natural Language Processing

๋งŒ์•ฝ ๋ชจ๋ธ์ด ์—ฌ๋Ÿฌ ๊ฐ๊ฐ์„ ๋Š๋‚„ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค๋ฉด? - Pathways ๋ฆฌ๋ทฐ

์ด ํฌ์ŠคํŠธ์˜ ์ œ๋ชฉ์„ ๋ณด๋ฉด์€ '๋ฌด์Šจ ์†Œ๋ฆฌ๋ฅผ ํ•˜๋Š” ๊ฑฐ์ง€?' ๋ผ๋Š” ์ƒ๊ฐ์ด ๋“ค ๊ฒƒ์ด๋‹ค. ํ•˜์ง€๋งŒ ์กฐ๊ธˆ ๋” ๊นŠ๊ฒŒ ์ƒ๊ฐํ•ด๋ณด์ž. ์šฐ๋ฆฌ ์ธ๊ฐ„์€ ์–ด๋–ค ๋ฌธ์ œ๋ฅผ ์ ‘ํ•˜๊ฑฐ๋‚˜ ํ•ด๊ฒฐํ•  ๋•Œ, ํ•˜๋‚˜ ์ด์ƒ์˜ ๊ฐ๊ฐ์„ ์‚ฌ์šฉํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด์„œ, ์ปต์„ ์ง‘๋Š”๋‹ค๋Š” ์ƒํ™ฉ์ด ์ƒ๊ฒผ์„ ๋•Œ, ๋จผ์ € ์‹œ๊ฐ์œผ๋กœ ์ปต์˜ ์ƒ๊น€์ƒˆ์™€ ์ปต์˜ ์œ„์น˜๋ฅผ ํ™•์ธํ•˜๊ณ , ์ด‰๊ฐ์„ ์ด์šฉํ•˜์—ฌ ์ปต์˜ ์ƒ๊น€์ƒˆ๋ฅผ ํ™•์ธํ•˜๊ณ  ์ง‘๋Š”๋‹ค. ์ด์™€ ๊ฐ™์ด, ํ•œ ๊ฐ€์ง€ ํ–‰๋™์„ ํ–‰ํ•  ๋•Œ์—๋„, ํ•˜๋‚˜ ์ด์ƒ์˜ ๊ฐ๊ฐ์„ ์‚ฌ์šฉํ•œ๋‹ค. ํ•˜์ง€๋งŒ, ํ˜„์žฌ ๊ฐœ๋ฐœ๋˜๋Š” AI ๋ชจ๋ธ๋“ค์„ ๋ณด๋ฉด, ๋Œ€๋ถ€๋ถ„์ด ์˜ค์ง ํ•˜๋‚˜์˜ task์—๋งŒ ์ง‘์ค‘ํ•œ ๋ชจ๋ธ๋“ค๋งŒ์ด ๊ฐœ๋ฐœ๋œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด์„œ, text์— ํŠนํ™”๋œ ๋ชจ๋ธ๊ณผ image์— ํŠนํ™”๋œ ๋ชจ๋ธ์ด ์žˆ๋‹ค๊ณ  ํ•ด๋ณด์ž. ์ด ๋‘˜์€ ๊ฐ๊ฐ์˜ task์—์„œ๋Š” ํ›Œ๋ฅญํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ์ด ๋‘˜์„ ํ•œ๊บผ๋ฒˆ์— ์ฒ˜๋ฆฌํ•˜๋Š” ๋ชจ๋ธ์€ ํ”์น˜ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

๊ตฌ๊ธ€์˜ ์ตœ๊ฐ• ์ฑ—๋ด‡, LaMDA์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์ž! Language Models for Dialog Applications ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

๋จผ์ € ํฌ์ŠคํŠธ๋ฅผ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์—, ์š”์ฆ˜์˜ ๋…ผ๋ฌธ๋“ค์€ ๋ญ๊ฐ€ ์ด๋ฆฌ๋„ ๋ถ„๋Ÿ‰์ด ๋งŽ์€ ๊ฑด์ง€,, ์ด LaMDA์˜ ๋…ผ๋ฌธ๋งŒ ํ•ด๋„ 40ํŽ˜์ด์ง€๋ฅผ ๋„˜๊ธฐ๋Š” ๋ถ„๋Ÿ‰์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ํฌ์ŠคํŠธ๋Š” ๊ตฌ๊ธ€์—์„œ ์ง์ ‘ LaMDA๋ฅผ ์†Œ๊ฐœํ•œ ๋ธ”๋กœ๊ทธ์˜ ๋‚ด์šฉ๋„ ํ•จ๊ป˜ ์ธ์šฉํ•˜์—ฌ ์ž‘์„ฑ๋˜์—ˆ๋‹ค๋Š” ์ ์„ ๊ฐ์•ˆํ•ด์ฃผ์…จ์œผ๋ฉด ํ•ฉ๋‹ˆ๋‹ค ใ…Žใ…Ž ๊ทธ๋Ÿฌ๋ฉด ๋ฐ”๋กœ ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ ํฌ์ŠคํŠธ๋กœ ๋›ฐ์–ด ๋“ค์–ด๊ฐ€ ๋ณผ๊นŒ์š”~?? The overview of this paper Language Model, ์ฆ‰ LM์€ ๋ฐœ์ „์— ๋ฐœ์ „์„ ๊ฑฐ๋“ญํ•˜์—ฌ NLP ๋ถ„์•ผ์— ์‚ฌ์šฉ๋˜์ง€ ์•Š๋Š” ๋ถ„์•ผ๊ฐ€ ์—†์„ ์ •๋„๋กœ ์—„์ฒญ๋‚œ ์„ฑ๋Šฅ์„ ์ž๋ž‘ํ•˜๊ณ  ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด์„œ, ์–ธ์–ด ๋ฒˆ์—ญ, ๋ฌธ์„œ ์š”์•ฝ๊ณผ ๊ฐ™์€ ๋ถ„์•ผ์—๋„ ์‚ฌ์šฉ๋œ๋‹ค. ์ด๋“ค ์ค‘์—์„œ๋„ ์˜คํ”ˆ ์ฑ—๋ด‡์€ ์–ด๋– ํ•œ ์ฃผ์ œ์— ๋Œ€ํ•ด์„œ๋„ ๋Œ€ํ™”๋ฅผ ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ์š”๊ตฌํ•œ๋‹ค. ๊ทธ๋ž˜์„œ ๋„“์€ ๋ถ„์•ผ์˜ ์ง€์‹๊ณผ ์ž ์žฌ์  ์‘์šฉ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

๋ณธ ํฌ์ŠคํŠธ๋ฅผ ์ฝ๊ธฐ ์ „์— DistilBERT์— ์‚ฌ์šฉ๋œ ๋ฉ”์ธ ํ…Œํฌ๋‹‰์ธ Knowledge Distillation์— ๋Œ€ํ•ด์„œ ๋จผ์ € ํ•™์Šตํ•˜์‹œ๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๋‹ค์Œ์˜ ํฌ์ŠคํŠธ๋ฅผ ์ฐธ๊ณ ํ•˜์‹œ์˜ค. The overview of this paper NLP์—์„œ large-scale์˜ pre-trained model์„ ํ™œ์šฉํ•˜์—ฌ transfer learning์„ ์ฒ˜๋ฆฌํ•˜๋Š” ์ผ์ด ํ”ํ•ด์ง€๋ฉด์„œ, ์ด ๊ฑฐ๋Œ€ํ•œ ๊ทœ๋ชจ์˜ ๋ชจ๋ธ์„ ํ•œ์ •๋œ ์ž์›์œผ๋กœ ์–ด๋–ป๊ฒŒ ๊ตฌ๋™ํ• ์ง€๋Š” ์•„์ง๋„ ์–ด๋ ค์šด ๋ฌธ์ œ๋กœ ๋‚จ์•„์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ž‘์€ ๊ทœ๋ชจ์˜ general purpose language representation model์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ task์— ๋Œ€ํ•ด ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋Š” DistilBERT๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด DistilBERT๋Š” BERT์— ๋น„ํ•ด 40..

Paper Reading ๐Ÿ“œ/Natural Language Processing

It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

์ด ๋…ผ๋ฌธ์—์„œ๋Š” PET์„ ์ด์šฉํ•œ๋‹ค. ์ด PET์— ๋Œ€ํ•ด ๊ถ๊ธˆํ•˜๋‹ค๋ฉด ๋‹ค์Œ์˜ ํฌ์ŠคํŠธ๋ฅผ ํ™•์ธํ•˜๊ธธ ๋ฐ”๋ž€๋‹ค. PET ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ: https://cartinoe5930.tistory.com/entry/PET-Exploiting-Cloze-Questions-for-Few-Shot-Text-Classification-and-Natural-Language-Inference-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 PET: Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ ์ด์ „์— ๋ฆฌ๋ทฐํ–ˆ๋˜ ๋…ผ๋ฌธ์ธ 'It's Not Just Size That Metters; Small Langua..

Paper Reading ๐Ÿ“œ/Natural Language Processing

GPT-2: Language Models are Unsupervised Multitask Learners ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

Pre-trained Language Modeling paper reading ์š”์ฆ˜ NLP ๋ถ„์•ผ์—์„œ ๋œจ๊ฑฐ์šด ๊ฐ์ž์ธ pre-trained Language Modeling์— ๊ด€ํ•œ ์œ ๋ช…ํ•œ ๋…ผ๋ฌธ๋“ค์„ ์ฝ๊ณ  ๋ฆฌ๋ทฐ๋ฅผ ํ•˜์˜€๋‹ค. ์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” ์ €๋ฒˆ ํฌ์ŠคํŠธ์ธ GPT-1์˜ ํ›„์† ๋ชจ๋ธ์ธ GPT-2์— ๋Œ€ํ•ด์„œ ๋ฆฌ๋ทฐํ•˜์˜€๋‹ค. ELMo: 'Deep contextualized word representations' reading & review BERT: 'Pre-training of Deep Bidirectional Transformers for Language Understanding' reading & review GPT-1: 'Improving Language Understanding by Generative Pre-Trai..

Paper Reading ๐Ÿ“œ/Natural Language Processing

GRU: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๊ฐœ์˜ RNN์œผ๋กœ ๊ตฌ์„ฑ๋œ RNN Encoder-Decoder๋กœ ๋ถˆ๋ฆฌ๋Š” ์ƒˆ๋กœ์šด ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ํ•˜๋‚˜์˜ RNN์€ ๊ณ ์ •๋œ ๊ธธ์ด์˜ ๋ฒกํ„ฐ representation์— ์‹ฌ๋ณผ์˜ ์‹œํ€€์Šค๋ฅผ ์ธ์ฝ”๋“œํ•˜์˜€๊ณ , ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ๋˜ ๋‹ค๋ฅธ ์‹ฌ๋ณผ์˜ ์‹œํ€€์Šค์— representation์„ ๋””์ฝ”๋“œํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ์˜ ์ธ์ฝ”๋”์™€ ๋””์ฝ”๋”๋Š” source sequence๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, target sequence์˜ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ์„ ์ตœ๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๊ณต๋™์œผ๋กœ ํ•™์Šต๋œ๋‹ค. ํ†ต๊ณ„์  ๊ธฐ๊ณ„ ๋ฒˆ์—ญ ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์€ ๊ธฐ์กด ๋กœ๊ทธ ์„ ํ˜• ๋ชจ๋ธ์˜ ์ถ”๊ฐ€ ๊ธฐ๋Šฅ์œผ๋กœ RNN Encoder-Decoder์—์„œ ๊ณ„์‚ฐ๋œ phrase pair์˜ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐœ์„ ๋จ์„ ๊ฒฝํ—˜์ ์œผ๋กœ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ •์„ฑ์ ์œผ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

ELECTRA: Pre-training Text Encoders as Discriminators rather than Generators ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper BERT์—์„œ๋Š” token์„ [MASK]๋กœ ๋ฐ”๊พธ๋ฉด์„œ ์ž…๋ ฅ์— ์†์ƒ์„ ์ฃผ๊ณ , ์ด๋ ‡๊ฒŒ ๋Œ€์ฒด๋œ ํ† ํฐ์„ ๊ธฐ์กด์˜ ํ† ํฐ์œผ๋กœ ์žฌ๊ตฌ์กฐํ•˜๋Š” Masked language modeling$($MLM$)$ pre-training ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ dowastream NLP task์„ ์ง„ํ–‰ํ•  ๋•Œ, ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ํšจ๊ณผ์ ์œผ๋กœ ์ง„ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฑฐ๋Œ€ํ•œ ์–‘์˜ ์ปดํ“จํŒ…์ด ์ˆ˜ํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค. ์ด์— ๋Œ€ํ•œ ๋Œ€์•ˆ์œผ๋กœ, ๋…ผ๋ฌธ์—์„œ๋Š” replaced token prediction์ด๋ผ๋Š” sample-efficient ํ•œ pre-training task๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ทธ๋‹ค์Œ์—, ๋ชจ๋ธ์ด ์†์ƒ๋œ ํ† ํฐ์˜ ๊ธฐ์กด ์ •์ฒด์„ฑ์„ ์˜ˆ์ธกํ•˜๊ฒŒ ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ ๋Œ€์‹ ์—, ์†์ƒ๋œ ์ž…๋ ฅ์˜ ๊ฐ ํ† ํฐ์ด generator..

Paper Reading ๐Ÿ“œ/Natural Language Processing

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์ž์—ฐ์–ด๋ฅผ pretrainingํ•  ๋•Œ ์ฆ๊ฐ€๋œ ๋ชจ๋ธ์˜ ํฌ๊ธฐ๋Š” downstream task์— ๋Œ€ํ•ด ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ํ•˜์ง€๋งŒ, GPU ๋˜๋Š” TPU ๋ฉ”๋ชจ๋ฆฌ ์ œ์•ฝ์— ๊ฐ€๋กœ๋ง‰ํ˜€ training time์— ์ œํ•œ์ด ์ƒ๊ธฐ๊ฒŒ ๋œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋‘ ๊ฐœ์˜ parameter reduction ๊ธฐ์ˆ ์„ ์†Œ๊ฐœํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ BERT์—์„œ ์ ์€ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ์œผ๋กœ ๋” ํ–ฅ์ƒ๋œ ์†๋„์˜ training์„ ๋ณด์—ฌ์คฌ๋‹ค. ์ข…ํ•ฉ์ ์ธ ์‹คํ—˜์  ์ฆ๊ฑฐ๋“ค์€ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ๊ธฐ์กด์˜ BERT๋ณด๋‹ค ๋”์šฑ ์ž˜ scaleํ•จ์„ ๋ณด์—ฌ์คฌ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋˜ํ•œ inter-sentence์˜ ์ผ๊ด€์„ฑ์„ ๋ชจ๋ธ๋งํ•˜๋Š” ๊ฒƒ์— ์ง‘์ค‘ํ•˜๋Š” self-supervised loss๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , ์ด๊ฒƒ์ด ๋‹ค์ค‘ sentence ์ž…๋ ฅ๊ณผ ํ•จ๊ป˜ ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

RoBERTa: A Robustly Optimized BERT Pretraining Approach ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์ด ๋…ผ๋ฌธ์€ BERT์˜ replication study๋กœ ๋‹ค์–‘ํ•œ key parameter๋“ค๊ณผ training data์˜ ํฌ๊ธฐ์˜ ์ค‘์š”์„ฑ์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์•˜๋‹ค. ๊ทธ ๊ณผ์ •์—์„œ ์—ฐ๊ตฌ์ง„๋“ค์€ BERT๋Š” ์ƒ๋‹นํžˆ undertrained ๋˜์—ˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ์•„๋‚ด์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  BERT ์ดํ›„์— ์ถœ์‹œ๋œ ๋ชจ๋ธ๋“ค์— ๋Œ€ํ•ด BERT๊ฐ€ ๊ทธ์— ์›ƒ๋„๋Š” ๋˜๋Š” ๋Šฅ๊ฐ€ํ•˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ ๋˜ํ•œ ์•Œ์•„๋ƒˆ๋‹ค. ์‹ค์ œ๋กœ๋„ GLUE, RACE, SQuAD ๊ฐ™์€ ๋ฐ์ดํ„ฐ์…‹์—์„œ SoTA๋ฅผ ์ฐจ์ง€ํ•˜๊ธฐ๋„ ํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๊ฐ•์กฐํ•˜๋Š” ๊ฒƒ์€ ์ด์ „์— ๊ฐ„๊ณผ๋˜์—ˆ๋˜ ๋””์ž์ธ ์„ ํƒ๊ณผ ์š”์ฆ˜์— ๋ฐœํ‘œ๋˜๋Š” ๊ฐœ์„ ์•ˆ๋“ค์˜ ๊ทผ์›์— ๋Œ€ํ•ด ์˜๋ฌธ์ ์„ ์ œ๊ธฐํ•˜์˜€๋‹ค. Table of Contents 1. Introduction 2. Backgroun..

Paper Reading ๐Ÿ“œ/Natural Language Processing

XLNet: Generalized Autoregressive Pretraining for Language Understanding ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

What improvements have been made in this paper? XLNet ๋…ผ๋ฌธ์€ ์ด์ „์˜ ๋ชจ๋ธ์ธ Transformer-XL์„ ์†Œ๊ฐœํ•œ ์—ฐ๊ตฌ์ง„๋“ค์ด ํ›„์†์œผ๋กœ ์ง„ํ–‰ํ•ด์„œ ๋ฐœํ‘œํ•œ ๋…ผ๋ฌธ์œผ๋กœ, Transformer-XL์„ ๊ฐœ์„ ์‹œํ‚ค๊ณ , BERT์˜ MLM์œผ๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•œ ๋ชจ๋ธ์ธ XLNet์„ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ์ด XLNet์˜ ํŠน์ง•์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ด XLNet์€ ๋‹น์‹œ์— SOTA์˜€๋˜ Transformer-XL์˜ ์•„์ด๋””์–ด๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์‚ฌ์ „ ํ›ˆ๋ จ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. XLNet์€ factorization order์˜ ๋ชจ๋“  ์ˆœ์—ด์— ๋Œ€ํ•ด ์˜ˆ์ƒ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ๋Œ€ํ™”ํ•˜์—ฌ ์–‘๋ฐฉํ–ฅ์œผ๋กœ ๋ฌธ๋งฅ์„ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. auto regressive formulation ๋•๋ถ„์— BERT์˜ ์ œ์•ฝ์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์œ„์™€ ๊ฐ™์€ ..

Cartinoe
'Paper Reading ๐Ÿ“œ/Natural Language Processing' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (6 Page)