์ „์ฒด ๊ธ€

Welcome! I'm a student studying about deep learning(NLP) ๐Ÿ˜‰ The goal of my study is to develop a competent LLM helping people!
Paper Reading ๐Ÿ“œ/Natural Language Processing

Alpaca: A Strong, Replicable Instruction-Following Model ๋ฆฌ๋ทฐ

The Overview ํ˜„์กดํ•˜๋Š” ๋งŽ์€ instruction-following ๋ชจ๋ธ์€ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋“ค์€ ์•„์ง ๋น„์†์–ด๋ฅผ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ์ž˜๋ชป๋œ ์ •๋ณด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋“ฑ์˜ ๊ฒฐํ•จ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด academic community์˜ ์ฐธ์—ฌ๊ฐ€ ์ค‘์š”ํ•˜์ง€๋งŒ, ํ•™๊ณ„์—์„œ instruction-following ๋ชจ๋ธ์— ๋Œ€ํ•ด ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ํ•œ์ •๋œ ์ž์›์—์„œ ์ด๋Ÿฌํ•œ ๋ชจ๋ธ๋“ค์— ์‰ฝ๊ฒŒ ์ ‘๊ทผํ•  ์ˆ˜ ์—†๊ธฐ์— ์‰ฝ์ง€๊ฐ€ ์•Š๋‹ค.. ๐Ÿ˜ญ Alpaca๋ฅผ ๊ณต๊ฐœํ•œ Stanford ์—ฐ๊ตฌํŒ€์—์„œ๋Š” Meta์˜ LLaMA 7B ๋ชจ๋ธ๋กœ fine-tune๋œ instruction-following ๋ชจ๋ธ์ธ Alpaca๋ฅผ ์†Œ๊ฐœํ•˜์˜€๋‹ค. (์š”์ฆ˜ ๋ชจ๋ธ๋“ค์€ ๋™๋ฌผ ์ด๋ฆ„์œผ๋กœ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ํŠธ๋ Œ๋“œ์ธ ๊ฒŒ ๋ถ„๋ช…ํ•˜๋‹ค..!! ๐Ÿ˜†) ์—ฌ๊ธฐ์—์„œ A..

Paper Reading ๐Ÿ“œ/Alignment Problem of LLM

Red Teaming Language Models with Language Models ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper LM์€ ์ข…์ข… ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฌ์šฉ์ž์—๊ฒŒ ํ•ด๋ฅผ ๊ฐ€ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ์ด์ „์˜ ์—ฐ๊ตฌ๋“ค์—์„œ๋Š” human annotator๋กœ๋ถ€ํ„ฐ harmful์˜ ํŠน์„ฑ์„ ์ •์˜ํ•˜๊ฒŒ ํ•˜๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ, human annotator๋Š” ๋น„์šฉ์ด ๋น„์‹ธ๊ณ , test case์˜ ๋‹ค์–‘์„ฑ๊ณผ ์ˆ˜์— ์ œ์•ฝ์ด ๊ฑธ๋ฆฐ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค๋ฅธ LM์„ ์‚ฌ์šฉํ•ด์„œ "red teaming" test case๋ฅผ ์ •์˜ํ•จ์œผ๋กœ์จ ํƒ€๊นƒ LM์ด harmful way๋กœ ํ–‰๋™ํ•˜๋Š” ์ผ€์ด์Šค๋ฅผ ์ž๋™์ ์œผ๋กœ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ณต๊ฒฉ์ ์ธ ์ฝ˜ํ…์ธ ๋ฅผ ๊ฐ์ง€ํ•˜๋„๋ก ํ•™์Šต๋œ classifier๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ์„ฑ๋œ ํ…Œ์ŠคํŠธ ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋Œ€์ƒ LM์˜ ์‘๋‹ต์„ ํ‰๊ฐ€ํ•˜๊ณ  280B LM ์ฑ—๋ด‡์—์„œ ์ˆ˜๋งŒ ๊ฐœ์˜ ๊ณต๊ฒฉ์ ์ธ ์‘๋‹ต์„ ๋ฐœ๊ฒฌ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

Self-Instruct: Aligning Language Model with Self Generated Instructions ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ๊ฑฐ๋Œ€ instruction-tuned LM์€ ์ƒˆ๋กœ์šด task์— ๋Œ€ํ•ด zero-shot์œผ๋กœ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ์ข‹์€ ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ด๋“ค์€ ์–‘, ๋‹ค์–‘์„ฑ, ์ฐฝ์˜์„ฑ์ด ํ•œ์ •๋˜์–ด ์žˆ๋Š” human-written instruction data์— ํฌ๊ฒŒ ์˜์กดํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Š” tuned model์˜ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ์„ ๋ฐฉํ•ดํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” LM์˜ ์ƒ์„ฑ์„ ํ™œ์šฉํ•ด์„œ PLM์˜ instruction-following ๋Šฅ๋ ฅ์„ ๊ฐœ์„ ์‹œ์ผœ ์ฃผ๋Š” ํ”„๋ ˆ์ž„์›Œํฌ์ธ Self-Instruct๋ฅผ ์†Œ๊ฐœํ•˜์˜€๋‹ค. Self-Instruct์˜ ํŒŒ์ดํ”„๋ผ์ธ์€ LM์œผ๋กœ๋ถ€ํ„ฐ instruction, input, output ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•˜๊ณ , ์ด๋“ค์„ ์‚ฌ์šฉํ•ด์„œ ๊ธฐ์กด ๋ชจ๋ธ์„ fine-tune ํ•˜๊ธฐ ์ „์— ๊ธฐ์ค€์— ๋”ฐ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

LLaMA: Open and Efficient Foundation Language Models ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ๋…ผ๋ฌธ์—์„œ๋Š” 7B to 65B foundation LM์˜ ๋ชจ์Œ์ธ LLaMA๋ฅผ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ์ด ๋ชจ๋ธ์€ ์ˆ˜ ์กฐ ๊ฐœ์˜ ํ† ํฐ์—์„œ ํ•™์Šต๋˜์—ˆ๊ณ , publicly available ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•œ ํ•™์Šต๋งŒ์œผ๋กœ๋„ SoTA ๋ชจ๋ธ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์„ ์ •๋„์˜ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์คฌ๋‹ค. ํŠนํžˆ LLaMA-13B๋Š” ๊ฑฐ์˜ ๋Œ€๋ถ€๋ถ„์˜ ๋ฒค์น˜๋งˆํฌ์—์„œ GPT-3์„ ๋Šฅ๊ฐ€ํ–ˆ๊ณ , LLaMA-65B๋Š” Chinchilla-70B์™€ PaLM-540B ๊ฐ™์€ ์ตœ๊ณ ์˜ ๋ชจ๋ธ๊ณผ ๊ฒฌ์ค„ ๋งŒํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์คฌ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฐ€์žฅ ํ™˜์ƒ์ ์ธ ์ ์€ ์ด ๋ชจ๋ธ๋“ค์€ ๋ชจ๋‘ research community์— ๊ณต๊ฐœ๋˜์—ˆ๋‹ค๋Š” ์ ์ด๋‹ค. Table of Contents 1. Introduction 2. Approach 3. Main Results 4. I..

Paper Reading ๐Ÿ“œ/Natural Language Processing

์ง€๊ธˆ ๊นŒ์ง€์˜ LM Scaling Law์—๋Š” ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค?!?! ๐Ÿ˜ถ‍๐ŸŒซ๏ธ Chinchilla: Training Compute-Optimal Large Language Models ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ฃผ์–ด์ง„ compute budget์—์„œ transformer LM์„ ํ•™์Šต์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ตœ์ ์˜ ๋ชจ๋ธ ์‚ฌ์ด์ฆˆ & ํ† ํฐ์˜ ์ˆ˜๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ํ˜„์žฌ์˜ ๋ชจ๋ธ๋“ค์€ ์ƒ๋‹นํžˆ under-train ๋˜์–ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐํ˜”๋‹ค. ํ˜„์žฌ ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์€ ๋ชจ๋ธ์˜ ์‚ฌ์ด์ฆˆ๋Š” scaling ํ•˜์ง€๋งŒ, training data์˜ ์–‘์€ ํฌ๊ฒŒ ๋ณ€ํ™”์‹œํ‚ค์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์—ฌ๋Ÿฌ ๋ชจ๋ธ ์‚ฌ์ด์ฆˆ์™€ ํ† ํฐ์˜ ์ˆ˜์— ๋Œ€ํ•ด ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜๊ณ  compute-optimal training์„ ์œ„ํ•ด ๋ชจ๋ธ ์‚ฌ์ด์ฆˆ์™€ training ํ† ํฐ์˜ ์ˆ˜๋Š” ๋˜‘๊ฐ™์ด scale ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด Gopher์™€ ๋˜‘๊ฐ™์€ compute budget์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ 70B ํŒŒ๋ผ๋ฏธํ„ฐ..

Paper Reading ๐Ÿ“œ/Alignment Problem of LLM

Training a helpful and harmless assistant with reinforcement learning from human feedback ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

์ด๋ฒˆ ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ๋Š” ๊ธฐ์กด ๋ฐฉ์‹๊ณผ ๋‹ค๋ฅด๊ฒŒ powerpoint๋กœ ์ž‘์„ฑํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ๊ฐ„๋‹จํ•œ ๊ฐœ์š”๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๊ณ , ๋…ผ๋ฌธ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ์ฒจ๋ถ€๋œ powerpoint ํŒŒ์ผ์„ ํ™•์ธํ•˜๊ธธ ๋ฐ”๋ž€๋‹ค. powerpoint์˜ ๋ฉ”๋ชจ์™€ ์Šฌ๋ผ์ด๋“œ ๋…ธํŠธ์— ์„ค๋ช…์„ ์ ์–ด๋’€์œผ๋‹ˆ ์ฐธ๊ณ ํ•˜๊ธธ ๋ฐ”๋ž€๋‹ค. ์ด ํฌ์ŠคํŒ…์€ ๋‹ค์Œ์˜ ์œ ํŠœ๋ธŒ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์ž‘์„ฑ๋˜์—ˆ๋‹ค. The overview of this paper ๋…ผ๋ฌธ์—์„œ๋Š” LM์ด ์œ ์šฉ(helpful)ํ•˜๊ณ  ์œ ํ•ดํ•˜์ง€ ์•Š๊ฒŒ(harmless)ํ•˜๊ฒŒ ์ž‘๋™ํ•˜๋„๋ก preference modeling(PM)๊ณผ ์‚ฌ๋žŒ์˜ ํ”ผ๋“œ๋ฐฑ์œผ๋กœ๋ถ€ํ„ฐ ๊ฐ•ํ™”ํ•™์Šต(RLHF)๋ฅผ ์ ์šฉํ•˜์—ฌ fine-tune ๋˜์—ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ alignment training์ด ๋Œ€๋ถ€๋ถ„์˜ NLP ํ‰๊ฐ€์—์„œ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , python ์ฝ”๋”ฉ ๋˜๋Š” ์š”์•ฝ๊ณผ ๊ฐ™์€ ..

Paper Reading ๐Ÿ“œ/Alignment Problem of LLM

Exploring the Benefits of Training Expert Language Models over Instruction Tuning ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์ตœ๊ทผ์— multi-task prompted fine-tunig(MT)๋ผ๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋Š” ๋‹ค์–‘ํ•œ task์—์„œ instruction-tuneํ•˜๋Š” LM์€ unseen task์— ๋Œ€ํ•ด ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ด์ „์˜ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ•๋ ฅํ•œ MT LM์„ ๋งŒ๋“œ๋Š”๋ฐ๋Š” ํ•™์Šต task์˜ ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ์š”์†Œ๋ผ๊ณ  ๋ฐํ˜”์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์˜ค์ง ํ•˜๋‚˜์˜ task์—์„œ ํ•™์Šต๋œ expert LM์ด 300๊ฐœ ์ด์ƒ์˜ ์„œ๋กœ ๋‹ค๋ฅธ task์—์„œ ํ•™์Šต๋œ MT LM์„ ๋Šฅ๊ฐ€ํ•œ๋‹ค๋Š” ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์คฌ๋‹ค. ์ด ๋ฐœ๊ฒฌ์€ ์ด์ „์˜ task์˜ ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๋ฉด ๊ฐ•๋ ฅํ•ด์ง„๋‹ค๋Š” ๋ฏฟ์Œ์— ์˜๋ฌธ์„ ์ œ๊ธฐํ•˜์˜€๋‹ค. ์ด ๋ฐœ๊ฒฌ์„ ํ†ตํ•ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹จ์ผ MT LM ๋Œ€์‹  ํ•™์Šต task ๋‹น ๋ณ„๋„์˜ expert LM์„ ํ•™์Šต..

Paper Reading ๐Ÿ“œ/Alignment Problem of LLM

Scaling Instruction-Finetuned Language Models ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper LM์„ instruction์œผ๋กœ ํ‘œํ˜„๋˜์–ด ์žˆ๋Š” ๋ฐ์ดํ„ฐ์…‹ ๋ชจ์Œ์—์„œ fine-tuneํ•˜๋Š” ๊ฒƒ์€ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ๊ณผ unseen task์— ๋Œ€ํ•œ ์ผ๋ฐ˜ํ™”๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” instruction fine-tuning์„ ํŠน๋ณ„ํ•œ ๊ด€์ ์—์„œ ๋“ค์—ฌ๋‹ค ๋ณด์•˜๋‹ค. task์˜ ์ˆ˜ ๋Š˜๋ฆฌ๊ธฐ ๋ชจ๋ธ ์‚ฌ์ด์ฆˆ ๋Š˜๋ฆฌ๊ธฐ CoT ๋ฐ์ดํ„ฐ์—์„œ fine-tune ์œ„์˜ ์ธก๋ฉด์„ ์‚ฌ์šฉํ•œ instruction fine-tuning์€ ์„ฑ๋Šฅ์„ ์ƒ๋‹นํžˆ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ชจ์Šต์„ ๋ณด์—ฌ์ ”๋‹ค. ์ „๋ฐ˜์ ์œผ๋กœ instruction fine-tuning์€ ์„ฑ๋Šฅ๊ณผ pre-trained LM์˜ ๊ฐ€์šฉ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. Table of Contents 1. Introduction 2. Flan Finetuning..

Paper Reading ๐Ÿ“œ/Alignment Problem of LLM

Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-shot Learners ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper Meta-training์€ task instruction๊ณผ ์ž…๋ ฅ ์ธ์Šคํ„ด์Šค๊ฐ€ ์ฃผ์–ด์ง€๋ฉด ํƒ€๊นƒ ๋ผ๋ฒจ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ๋Œ€ํ™”ํ•จ์œผ๋กœ์จ ๋‹ค์–‘ํ•œ downstream task์—์„œ LM์„ fine-tune ํ•œ๋‹ค. ์ด training์€ ๋ชจ๋ธ์˜ zero-shot task ์ผ๋ฐ˜ํ™”๋ฅผ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ํ•˜์ง€๋งŒ, meta-trained LM๋„ meta-training ์ค‘์— ๋ณธ ์  ์—†๋˜ ์ƒˆ๋กœ์šด ๋ผ๋ฒจ์„ ํฌํ•จํ•˜๋Š” task์— ๋Œ€ํ•ด์„œ ์ผ๋ฐ˜ํ™”ํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” Flipped Learning์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ meta-training๊ณผ ๋ฐ˜๋Œ€๋กœ, ์ž…๋ ฅ ์ธ์Šคํ„ด์Šค์™€ ๋ผ๋ฒจ์ด ์ฃผ์–ด์ง€๋ฉด task instruction์„ ์ƒ์„ฑํ•˜๋„๋ก LM์„ ํ•™์Šต์‹œํ‚จ๋‹ค. Flipp..

Paper Reading ๐Ÿ“œ/Alignment Problem of LLM

Super-Natural Instructions: Generalization via Declarative Instructions on 1600+ NLP Tasks ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์–ด๋–ป๊ฒŒ NLP ๋ชจ๋ธ๋“ค์€ task instruction์ด ์ฃผ์–ด์งˆ ๋•Œ ๋‹ค์–‘ํ•œ unseen task์— ๋Œ€ํ•ด์„œ ๊ทธ๋ ‡๊ฒŒ ์ž˜ ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ์„๊นŒ? ์ด ์งˆ๋ฌธ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ๋ฌธ์—์„œ๋Š” 1,616๊ฐœ์˜ ๋‹ค์–‘ํ•œ NLP task์˜ ๋ฒค์น˜๋งˆํฌ์™€ ์ด๋“ค์˜ ์ „๋ฌธ๊ฐ€๊ฐ€ ์ž‘์„ฑํ•œ instruction์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” Super-Natural Instructions๋ฅผ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ์ด ํฌ๊ณ  ๋‹ค์–‘ํ•œ task์˜ ๋ชจ์Œ์€ instruction ํ•˜์—์„œ cross-task ์ผ๋ฐ˜ํ™”์˜ ์ฒ ์ €ํ•œ ๋ฒค์น˜๋งˆํฌ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค - ๋ชจ๋ธ์ด task์˜ ์„œ๋ธŒ์…‹์—์„œ instruction์„ ๋”ฐ๋ฅด๋„๋ก ํ•™์Šต์‹œํ‚ค๊ณ  ๋‚จ์•„ ์žˆ๋Š” unseen task์— ๋Œ€ํ•ด์„œ ํ‰๊ฐ€ํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๋ฌธ๋งฅ instruction์„ ๋”ฐ๋ฅด๋„..

Cartinoe
Cartinoe's paper review