Lecture ๐Ÿง‘โ€๐Ÿซ

Lecture ๐Ÿง‘โ€๐Ÿซ/Coursera

[Machine Learning] Multivariate Linear Regression

Multiple Features ์—ฌ๋Ÿฌ ๋ณ€์ˆ˜๋“ค์„ ์ด์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€๋ฅผ "multivariate linear regression"์ด๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ์ด์ œ ์ž…๋ ฅ ๋ณ€์ˆ˜๋ฅผ ์–ผ๋งˆ๋“ ์ง€ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์ •์‹์— ๋Œ€ํ•œ ํ‘œ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•˜๋„๋ก ํ•˜๊ฒ ๋‹ค. hypothesis function์˜ ๋‹ค๋ณ€์ˆ˜ ํ˜•ํƒœ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์—ฌ๋Ÿฌ feature๋“ค์„ ์ˆ˜์šฉํ•œ๋‹ค. hฮธ(x)=ฮธ0+ฮธ1x1+ฮธ2x2+ฮธ3x3+โ‹ฏ+ฮธnxn ์œ„ ์ˆ˜์‹์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋•๊ธฐ ์œ„ํ•ด ์ง‘ ๊ฐ€๊ฒฉ ์˜ˆ ์˜ˆ์‹œ๋ฅผ ์ ์šฉํ•ด๋ณด๋ฉด, ฮธ0์€ ์ผ๋ฐ˜์ ์ธ ์ง‘ ๊ฐ€๊ฒฉ, ฮธ1์€ ์ œ๊ณฑ ๋ฏธํ„ฐ ๋‹น ๊ฐ€๊ฒฉ, ฮธ2์€ ์ธต ์ˆ˜ ๋‹น ..

Lecture ๐Ÿง‘โ€๐Ÿซ/Coursera

[Machine Learning] Parameter Learning - Gradient Descent

Gradient Descent ์ด์ œ hypothesis function๊ณผ ์ด ํ•จ์ˆ˜๊ฐ€ ๋ฐ์ดํ„ฐ์— ์–ผ๋งˆ๋‚˜ ์ž˜ ๋งž๋Š”์ง€ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•๋„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด์ œ hypothesis function์—์„œ์˜ parameter๋ฅผ ์ธก์ •ํ•ด์•ผ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฒฝ์‚ฌ ํ•˜๊ฐ•๋ฒ•์ด ๋“ฑ์žฅํ•˜๊ฒŒ ๋œ๋‹ค. ฮธ0๊ณผ ฮธ1์— ๊ธฐ๋ฐ˜ํ•ด์„œ hypothesis function์˜ ๊ทธ๋ž˜ํ”„๋ฅผ ์ƒ์ƒํ•ด๋ณด๋„๋ก ํ•˜์ž. x์™€ y ์ž์ฒด๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ํ‘œ์‹œํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ hypothesis function์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ฒ”์œ„์™€ ํŠน์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ง‘ํ•ฉ์„ ์„ ํƒํ•ด์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์šฉ์„ ๊ทธ๋ž˜ํ”„๋กœ ํ‘œ์‹œํ•œ๋‹ค. ฮธ0์„ x์ถ•, ฮธ1์„ y์ถ•, cost function์„ ์ˆ˜์ง z์ถ•์œผ๋กœ ๋‘์–ด๋ณด์ž. ๊ทธ๋ž˜ํ”„์˜ ์ ์€ ํŠน์ • $\t..

Lecture ๐Ÿง‘โ€๐Ÿซ/Coursera

[Machine Learning] Model & Cost Function

Model Representation ์•ž์œผ๋กœ ์‚ฌ์šฉ๋  ๊ฒฝ์šฐ๋ฅผ ์œ„ํ•ด, ๋ช‡ ๊ฐ€์ง€ ๊ธฐํ˜ธ๋“ค์„ ์ •์˜ํ•˜๊ณ  ๋„˜์–ด๊ฐ€๋„๋ก ํ•˜์ž. x(i)๋Š” ์ž…๋ ฅ ๋ณ€์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ , ์ž…๋ ฅ ํŠน์ง•์ด๋ผ๊ณ ๋„ ๋ถ€๋ฅธ๋‹ค. y(i)๋Š” ์ถœ๋ ฅ ๋˜๋Š” ํƒ€๊ฒŸ ๋ณ€์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ , ์ด ๊ฐ’์ด ์šฐ๋ฆฌ๊ฐ€ ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฐ’์ด๋‹ค. (x(i),y(i)) ์Œ์€ ํ•™์Šต ์˜ˆ์‹œ๋ผ๊ณ  ๋ถ€๋ฅด๊ณ , ์ด ๋ฐ์ดํ„ฐ์…‹์€ ํ•™์Šตํ•  ๋•Œ ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  m๊ฐœ ํ•™์Šต ์˜ˆ์‹œ๋กœ ์ด๋ฃจ์–ด์ง„ ๋ฆฌ์ŠคํŠธ (x(i),y(i));i=1,...,m์„ training set์ด๋Ÿฌ๊ณ  ๋ถ€๋ฅธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๋ชจ๋“  ๊ธฐํ˜ธ์—์„œ ๋“ฑ์žฅํ•œ "i"๋Š” training set์˜ ์ธ๋ฑ์Šค์ผ ๋ฟ, ์ง€์ˆ˜์˜ ์—ญํ• ์„ ํ•˜์ง€ ์•Š๋Š”๋‹ค! ๐Ÿ™… ๋˜ํ•œ, X๋Š” ์ž…๋ ฅ ๋ณ€์ˆ˜๋“ค์˜ ๊ณต๊ฐ„์„, Y๋Š” ์ถœ๋ ฅ ๋ณ€์ˆ˜๋“ค์˜ ๊ณต๊ฐ„์„ ๋‚˜ํƒ€๋‚ธ๋‹ค..

Lecture ๐Ÿง‘โ€๐Ÿซ/Coursera

[Machine Learning] What is Machine Learning? - Supervised Learning & Unsupervised Learning

What is Machine Learning? machine learning์˜ ์ •์˜์— ๋Œ€ํ•ด์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ž…์žฅ์ด ์ฃผ์žฅ๋˜์—ˆ๋‹ค. Arthur Samuel์— ์˜ํ•˜๋ฉด Machine Learning์€ "์ปดํ“จํ„ฐ์—๊ฒŒ ๋ช…ํ™•ํ•œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์—†์ด ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ์ฃผ๋Š” ๋ถ„์•ผ" ๋ผ๊ณ  ๋ฌ˜์‚ฌํ•œ๋‹ค. ์ด ์ฃผ์žฅ์€ ์˜ค๋ž˜ ๋˜์—ˆ๊ณ , ๋น„๊ณต์‹์ ์ธ ์ •์˜์ด๋‹ค. ๐Ÿ˜… Tom Mitchell์€ ๋”์šฑ ํ˜„๋Œ€์ ์ธ ์ •์˜๋ฅผ ์ œ๊ณตํ•˜์˜€๋‹ค: "์ปดํ“จํ„ฐ ํ”„๋กœ๊ทธ๋žจ์€ ๋ช‡๋ช‡ task T์˜ ํด๋ž˜์Šค์— ๊ด€ํ•œ ๊ฒฝํ—˜ E์™€ ์„ฑ๋Šฅ ์ง€ํ‘œ P๋กœ๋ถ€ํ„ฐ ํ•™์Šต๋˜์„œ, task T์—์„œ์˜ ์„ฑ๋Šฅ์€ P์— ์˜ํ•ด ์ธก์ •๋˜๊ณ , ๊ฒฝํ—˜ E๋กœ ํ–ฅ์ƒ๋œ๋‹ค." ์ฒด์ปค๋ฅผ ์˜ˆ๋กœ ๋“ค์–ด์„œ ์„ค๋ช…ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. E: ๋งŽ์€ ์ฒด์ปค ๊ฒŒ์ž„ ํ”Œ๋ ˆ์ด ๊ฒฝํ—˜ T: ์ฒด์ปค๋ฅผ ํ”Œ๋ ˆ์ดํ•˜๋Š” task P: ํ”„๋กœ๊ทธ๋žจ์ด ๋‹ค์Œ..

Lecture ๐Ÿง‘โ€๐Ÿซ/Coursera

Stanford University Machine Learning ๊ฐ•์˜(Andrew Ng)

๋จธ์‹ ๋Ÿฌ๋‹ ๊ฐ•์˜์˜ ๋Œ€๋ช…์‚ฌ๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๊ฐ•์˜์ธ Andrew Ng์˜ Machine Learning ๊ฐ•์˜๋ฅผ ๋“ค์œผ๋ฉด์„œ ์ •๋ฆฌํ•œ ๋‚ด์šฉ๋“ค๋กœ ํฌ์ŠคํŠธ๋ฅผ ์ž‘์„ฑํ•˜์˜€๋‹ค. ์ˆœ์ „ํžˆ ํ•™์Šต์šฉ์œผ๋กœ ์ž‘์„ฑํ•œ ๋‚ด์šฉ์ด๋ผ ๋ถ€์กฑํ•œ ๋‚ด์šฉ์ด ์žˆ์„ ์ˆ˜๋„ ์žˆ๋Š”๋ฐ, ์ด๋Ÿฐ ์ ์— ๋Œ€ํ•œ ์ง€์ ์€ ์–ธ์ œ๋“  ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค!! ๐Ÿค— Coursera์—์„œ ์šด์˜ํ•˜๋Š” ์ด ๊ฐ•์˜๋Š” ๋ฌด๋ฃŒ๋กœ ์ง„ํ–‰๋˜๋ฉฐ, ์–‘์งˆ์˜ ์ •๋ณด๋“ค์„ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋ž˜์„œ ํ•œ ๋ฒˆ ์‹œ๊ฐ„์ด ๋‚˜๋ฉด ์ง์ ‘ ๊ณต๋ถ€ํ•ด๋ณด๊ธฐ๋ฅผ ์ ๊ทน ๊ถŒ์žฅํ•œ๋‹ค. ๊ฐ•์˜์˜ ๋งํฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๊ฐ•์˜ ๋งํฌ: https://www.coursera.org/learn/machine-learning?action=enroll Supervised Machine Learning: Regression and Classification In the first course of the ..

Lecture ๐Ÿง‘โ€๐Ÿซ/Hugging Face Course

Hugging Face Course

์ด ์ฝ”์Šค๋Š” Hugging Face์—์„œ ์šด์˜ํ•˜๋Š” ์ฝ”์Šค๋กœ, NLP ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋˜๋Š” Transformer์— ๋Œ€ํ•ด ํ•™์Šตํ•˜๊ณ , ์ง์ ‘ Hugging Face ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌํ˜„ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋Œ€ํ•ด ํ•™์Šตํ•˜๊ณ  ์ •๋ฆฌํ•œ ๋‚ด์šฉ๋“ค๊ณผ ์ฝ”๋“œ๋“ค์€ github์— ์•ž์œผ๋กœ ํ•˜๋‚˜ํ•˜๋‚˜์”ฉ ์—…๋กœ๋“œํ•  ์˜ˆ์ •์ด๋‹ค. ๊ด€์‹ฌ์ด ์žˆ๋Š” ๋ถ„๋“ค์„ ์ œ github๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์‹ค ๋ฐ”๋ž๋‹ˆ๋‹ค!! Hugging Face Course: https://huggingface.co/course/chapter1/1?fw=pt Introduction - Hugging Face Course 2. Using ๐Ÿค— Transformers 3. Fine-tuning a pretrained model 4. Sharing models and tokenizers 5. The ๐Ÿค— D..