Paper Reading ๐Ÿ“œ

Paper Reading ๐Ÿ“œ/Natural Language Processing

KD์— ์‚ด์ง์˜ ๋ณ€ํ™”๋ฅผ ์ค˜๋ณด์ž!! ๐Ÿ˜œ - Knowledge Distillation of Large Language Models ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์ด์ „์˜ KD๋Š” ์ฃผ๋กœ black-box model API๋ฅผ ๋ชจ๋ฐฉํ•˜๊ธฐ ์œ„ํ•ด white-box ๋ถ„๋ฅ˜ ๋ชจ๋ธ ๋˜๋Š” small model์„ ํ•™์Šต์‹œํ‚ค๋Š”๋ฐ ์ ์šฉ๋œ๋‹ค. white-box ์ƒ์„ฑ LLM์œผ๋กœ๋ถ€ํ„ฐ ์–ด๋–ป๊ฒŒ ํšจ๊ณผ์ ์œผ๋กœ distill ํ•˜๋Š”์ง€๋Š” ์•„์ง under-explore ๋˜์–ด ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” forward KLD๋ฅผ reverse KLD๋กœ ๋Œ€์ฒดํ•จ์œผ๋กœ์จ ์ƒ์„ฑ์  larger LM์œผ๋กœ๋ถ€ํ„ฐ smaller LM์„ distill ํ•˜๋Š” MiniLLM์„ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ์ด๊ฒƒ์€ student model์ด teacher ๋ถ„ํฌ์˜ low-probability ์˜์—ญ์„ ๊ณผ๋„ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ ๋ชจ๋ธ์„ ๋ณดํ˜ธํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ƒ์„ฑ์  LM์— ๋”์šฑ ์ ํ•ฉํ•œ LM์ด๋‹ค. MiniLLM์€ ์ „๋ฐ˜์ ์œผ๋กœ ๋†’์€ ํ€„..

Paper Reading ๐Ÿ“œ/Natural Language Processing

Let's verify step-by-step ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์ตœ๊ทผ ๋ช‡ ๋…„ ๋™์•ˆ LLM์€ ๋ณต์žกํ•œ multi-step ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ๋Šฅ๋ ฅ์ด ์ƒ๋‹นํžˆ ๊ฐœ์„ ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, SoTA ๋ชจ๋ธ์€ ์•„์ง ๋…ผ๋ฆฌ์  ์˜ค๋ฅ˜๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด๊ธฐ๋„ ํ•œ๋‹ค. ๋”์šฑ ์‹ ๋ขฐ๋„ ์žˆ๋Š” ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ตœ์ข… ๊ฒฐ๊ณผ์— ๋Œ€ํ•ด ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜๋Š” outcome supervision์œผ๋กœ ์ „ํ™˜๋  ์ˆ˜ ์žˆ๋‹ค. ๋…ผ๋ฌธ์˜ ์‹คํ—˜์„ ํ†ตํ•ด ์–ด๋ ค์šด MATH ๋ฐ์ดํ„ฐ์…‹์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด process supervision์ด outcome supervision์„ ์ƒ๋‹นํžˆ ๋Šฅ๊ฐ€ํ•˜๋Š” ๋ชจ์Šต์„ ๋ณด์—ฌ์คฌ๋‹ค. ๋˜ํ•œ active learning์ด process supervision์˜ ํšจํ—˜์„ ์ƒ๋‹นํžˆ ๊ฐœ์„ ์‹œํ‚จ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋ฆฌ๊ณ  80๋งŒ ๊ฐœ์˜ step-level human feedback ๋ผ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

์ค‘์š”ํ•œ ๊ฑด ๊บพ์ด์ง€ ์•Š๋Š” high-quality data!! - Koala๐Ÿจ: A Dialogue Model for Academic Research ๋ฆฌ๋ทฐ

Koala Overview Koala๋ฅผ ์†Œ๊ฐœํ•˜๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” ์›น์œผ๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘๋œ ๋Œ€ํ™” ๋ฐ์ดํ„ฐ์—์„œ Meta์˜ LLaMA๋ฅผ fine-tuning ํ•จ์œผ๋กœ์จ ํ•™์Šต๋œ ์ฑ—๋ด‡์ธ Koala๋ฅผ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ์…‹ curation๊ณผ training process๋ฅผ ์„ค๋ช…ํ•˜๊ณ  Koala์™€ ChatGPT, Alpaca์™€ ๋น„๊ตํ•˜๋Š” ์‚ฌ์šฉ์ž ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ ๋˜ํ•œ ๋ณด์—ฌ์คฌ๋‹ค. Koala์˜ ๊ฒฐ๊ณผ๋Š” Koala๊ฐ€ ๋‹ค์–‘ํ•œ ์‚ฌ์šฉ์ž ์ฟผ๋ฆฌ์— ํšจ๊ณผ์ ์œผ๋กœ ์‘๋‹ตํ•  ์ˆ˜ ์žˆ๊ณ , ์‘๋‹ต ์ƒ์„ฑ๋„ Alpaca๋ณด๋‹ค ๋” ์„ ํ˜ธ๋˜์—ˆ๊ณ , ์ ˆ๋ฐ˜์ด ๋„˜๋Š” ๊ฒฝ์šฐ์— ์ตœ์†Œํ•œ ChatGPT์™€ ํƒ€์ด๋ฅผ ์ด๋ฃจ๋Š” ๋ชจ์Šต์„ ๋ณด์—ฌ์คฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์ถฉ๋ถ„ํžˆ ์ž‘์€ ๋ชจ๋ธ๋„ ์‹ ์ค‘ํ•˜๊ฒŒ ๋ชจ์—ฌ์ง„ ๋ฐ์ดํ„ฐ์—์„œ ํ•™์Šต๋˜๋ฉด ์ด ๋ชจ๋ธ๋“ค์˜ ํฐ cousin ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋งŽ์ด ์บก์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๊ฒƒ์€ ์ปค๋ฎค๋‹ˆํ‹ฐ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

Vicuna๐Ÿช: An Open-Source Chatbot Impressing GPT-4 ๋ฆฌ๋ทฐ

The overview of 'Vicuna' Vicuna 13B๋Š” ShareGPT๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘๋œ user-shared ๋Œ€ํ™”์—์„œ fine-tuned LLaMA์—์„œ ํ•™์Šต๋œ open-source ์ฑ—๋ด‡์ด๋‹ค. GPT-4๋ฅผ ํ‰๊ฐ€์ž๋กœ ์‚ฌ์šฉํ•œ ์‚ฌ์ „ ํ‰๊ฐ€๋Š” Vicuna-13B๊ฐ€ OpenAI ChatGPT์™€ Google Bard์˜ 90%์— ํ•ด๋‹นํ•˜๋Š” ํ€„๋ฆฌํ‹ฐ๋ฅผ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐ˜๋ฉด LLaMA์™€ Alpaca๋ณด๋‹ค 90%์˜ ๊ฒฝ์šฐ์— ๋” ๋‚˜์€ ๋ชจ์Šต์„ ๋ณด์—ฌ์คฌ๋‹ค. Vicuna-13B์˜ ํ•™์Šต ๋น„์šฉ์€ 300$ ์ •๋„์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  Vicuna์˜ ์ฝ”๋“œ์™€ ๊ฐ€์ค‘์น˜๋Š” ๋น„์ƒ์—…์  ์‚ฌ์šฉ์— ํ•œํ•ด์„œ ๊ณต๊ฐœ๋˜์—ˆ๋‹ค. How Good Is Vicuna? 70K user-shared ChatGPT ๋Œ€ํ™”๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Vicuna๋ฅผ fine-tuning ํ•œ ํ›„์—, Vicuna๋Š” Al..

Paper Reading ๐Ÿ“œ/Natural Language Processing

imitation์ด ์ข‹์€ ํ•™์Šต ๋ฐฉ๋ฒ•์ผ๊นŒ? ๐Ÿค”: The False Promise of Imitating Proprietary LLMs ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper weaker LM์„ ๊ฐœ์„ ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๊ฐ’์‹ผ method๋Š” stronger model์˜ output์—์„œ weaker LM์„ fine-tune ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ๋ฒ•์€ weaker open-source ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ์—…์  ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ๊ฐ’์‹ธ๊ฒŒ ํ‰๋‚ด ๋‚ด๋Š” ๋ฐฉ์‹์ฒ˜๋Ÿผ ๋ณด์ธ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ์ ‘๊ทผ๋ฒ•์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๊ทœ๋ชจ์˜ ๋ชจ๋ธ ์‚ฌ์ด์ฆˆ, ๋ฐ์ดํ„ฐ ์†Œ์Šค, ๋ชจ๋ฐฉ ๋ฐ์ดํ„ฐ์˜ ์–‘์„ ์‚ฌ์šฉํ•ด์„œ ChatGPT๋ฅผ ๋ชจ๋ฐฉํ•˜๋Š” LM์˜ ์‹œ๋ฆฌ์ฆˆ๋ฅผ fine-tune ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๋ชจ๋ธ์„ crwodworker & NLP ๋ฒค์น˜๋งˆํฌ์—์„œ ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ์— ๋…ผ๋ฌธ์—์„œ๋Š” ๋ชจ๋ฐฉ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ ํ€„๋ฆฌํ‹ฐ์— ๋Œ€ํ•ด ๋†€๋ž๋‹ค! ์™œ๋ƒํ•˜๋ฉด ๋ชจ๋ฐฉ ๋ชจ๋ธ์ด ์ถœ๋ ฅ์ด instruction์„ ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

Open LLM Leaderboard๋ฅผ ํœฉ์“ด Falcon๐Ÿฆ… LLM: Falcon & RefinedWeb

์ตœ๊ทผ Hugging Face์˜ Open LLM Leaderboard๋ฅผ ๋‘˜๋Ÿฌ๋ณด๋˜ ์ค‘ ์ƒˆ๋กœ์šด ๋ชจ๋ธ์ด ๋ฆฌ๋”๋ณด๋“œ์˜ 1๋“ฑ์— ์œ„์น˜ํ•ด ์žˆ๋Š” ๊ฒƒ์„ ๋ณด๊ณ  '์–ด๋–ค ๋ชจ๋ธ์ด์ง€?'๋ผ๋Š” ๊ถ๊ธˆ์ฆ์ด ์ƒ๊ฒจ์„œ ์ด๋ ‡๊ฒŒ ํฌ์ŠคํŒ…์„ ์ž‘์„ฑํ•ด ๋ณธ๋‹ค. ์ƒˆ๋กญ๊ฒŒ 1๋“ฑ์„ ์ฐจ์ง€ํ•œ ๋ชจ๋ธ์€ ๋ฐ”๋กœ TII์—์„œ ๊ฐœ๋ฐœํ•œ Falcon๐Ÿฆ… ์ด๋ผ๋Š” ๋ชจ๋ธ์ด๋‹ค. Falcon์€ ์ด 4๊ฐ€์ง€ ๋ฒ„์ „์˜ ๋ชจ๋ธ์ด ์กด์žฌํ•˜๋Š”๋ฐ, 7B & 40B ์‚ฌ์ด์ฆˆ์˜ ๋ชจ๋ธ๊ณผ ๊ฐ ์‚ฌ์ด์ฆˆ์—์„œ ๊ทธ๋ƒฅ base ๋ฒ„์ „๊ณผ instruct-tuned ๋ฒ„์ „๊นŒ์ง€ ํ•ด์„œ 4๊ฐœ์ด๋‹ค. ๊ทธ์ค‘์— 40B ์‚ฌ์ด์ฆˆ์˜ instruct-tuned ๋ฒ„์ „์ธ 'falcon-40b-instruct'๊ฐ€ Leaderboard์—์„œ 1๋“ฑ์„ ์ฐจ์ง€ํ•˜์˜€๋‹ค. ์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ๋Š” ์ด๋Ÿฌํ•œ Falcon ๋ชจ๋ธ์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ณ  Falcon์„ ๋งŒ๋“œ๋Š” ๋ฐ ํฐ ๊ธฐ์—ฌ๋ฅผ ํ–ˆ๋˜ ๋ฐ์ดํ„ฐ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

๐ŸฒBaize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ChatGPT ๊ฐ™์€ chat ๋ชจ๋ธ๋“ค์€ ์ธ์ƒ์ ์ธ ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๋ฉด์„œ ๋น ๋ฅด๊ฒŒ ์—ฌ๋Ÿฌ ๋„๋ฉ”์ธ์— ์ ์šฉ๋˜์–ด ๋‚˜๊ฐ€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ œํ•œ๋œ API ๋•Œ๋ฌธ์— ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ์— ์žฅ์• ๋ฌผ์„ ๋งŒ๋“ค๊ณ  ์žˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ChatGPT๋ฅผ ๋Œ€ํ™”์— ์ฐธ์—ฌ์‹œํ‚ค๊ฒŒ ํ™œ์šฉํ•จ์œผ๋กœ์จ ์ž๋™์ ์œผ๋กœ high-quality multi-turn chat corpus๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ทธ๋‹ค์Œ์— ์ด ๋ฐ์ดํ„ฐ๋“ค์„ parameter-efficient tuning์œผ๋กœ LLaMA๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ํƒ„์ƒํ•œ ๋ชจ๋ธ์ด Baize์ด๊ณ , ์ด ๋ชจ๋ธ์€ ๊ฐ€๋“œ๋ ˆ์ผ์ด ์žˆ๋Š” multi-turn dialogue ์„ธํŒ…์—์„œ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ChatGPT์˜ ํ”ผ๋“œ๋ฐฑ์„ ์‚ฌ์šฉํ•˜์—ฌ Baize ๋ชจ๋ธ์˜ ์„ฑ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

Sparks of Artificial General Intelligence: Early experiments with GPT-4 ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

์‹ค์ œ Sparks of AGI: with GPT-4 ๋…ผ๋ฌธ์€ 155ํŽ˜์ด์ง€์— ์œก๋ฐ•ํ•  ์ •๋„๋กœ ์—„์ฒญ๋‚œ ์–‘์˜ ์‹คํ—˜์„ ์ง„ํ–‰ํ•ด ๋ณด๋ฉฐ GPT-4๋ฅผ ๋‹ค๋ฐฉ๋ฉด์œผ๋กœ ํ™œ์šฉํ•ด ๋ณด์ง€๋งŒ, ๋ณธ ํฌ์ŠคํŒ…์—์„œ๋Š” ๊ทธ ๋งŽ์€ ๋‚ด์šฉ์„ ๋‹ค๋ฃจ๊ธฐ์—๋Š” ํž˜์ด ๋ฒ…์ฐจ์„œ ์ค‘์š” ๋ถ€๋ถ„๋“ค๋งŒ ๋”ฐ๋กœ ์‚ดํŽด๋ณด์•˜๋‹ค. ์ด ํฌ์ŠคํŒ…์€ ๋‹ค์Œ์˜ ์œ ํŠœ๋ธŒ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์ž‘์„ฑ๋˜์—ˆ๋‹ค. ์œ ํŠœ๋ธŒ: https://www.youtube.com/watch?v=Mqg3aTGNxZ0 The overview of this paper AI ์—ฐ๊ตฌ์ž๋“ค์€ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ๊ณผ task์—์„œ ๊ด„๋ชฉํ•  ๋งŒํ•œ ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๋Š” LLM์„ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ฐœ์„ ์‹œํ‚ค๊ณ  ์žˆ๋‹ค. OpenAI์—์„œ ๊ฐœ๋ฐœํ•œ GPT-4๋Š” ์ „๋ก€ ์—†๋Š” ๊ทœ๋ชจ์˜ ๊ณ„์‚ฐ๋Ÿ‰๊ณผ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ํ•™์Šต๋˜์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” GPT-4๊ฐ€ ์ด์ „ AI ๋ชจ๋ธ๋ณด๋‹ค ๋” ์ผ๋ฐ˜์ ์ธ ์ง€๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ƒˆ..

Paper Reading ๐Ÿ“œ/Natural Language Processing

Why can GPT learn in-context? ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ๊ฑฐ๋Œ€ PLM์€ ๋†€๋ผ์šด in-context learning(ICL) ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ๋†€๋ผ์šด ์„ฑ๋Šฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ด๋“ค์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์•„์ง open question์œผ๋กœ ๋‚จ์•„์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” LM์„ meta-optimizer๋กœ ์„ค๋ช…ํ•˜๊ณ  in-context learning์„ ์•”๋ฌต์ ์ธ fine-tuning์œผ๋กœ ์ดํ•ดํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ก ์ ์œผ๋กœ attention์€ ๋‹ค๋ฅธ ํ˜•ํƒœ์˜ gradient descent๋ผ๋Š” ๊ฒƒ์„ ์•Œ์•„๋ƒˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” in-context learning์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ดํ•ดํ•˜์˜€๋‹ค. GPT๊ฐ€ demonstration example์— ๋”ฐ๋ผ์„œ meta-gradient๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์ด ๊ธฐ์šธ๊ธฐ๋Š” ICL ๋ชจ๋ธ ์ƒ์„ฑ์„ ์œ„ํ•ด ๊ธฐ์กด์˜ GPT์—..

Paper Reading ๐Ÿ“œ/Natural Language Processing

LMSI: Large Language Models can Self-Improve ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper LLM์€ fine-tune ํ•˜๋Š”๋ฐ ๊ด‘๋ฒ”์œ„ํ•œ supervision์„ ํ•„์š”๋กœ ํ•˜๋Š” ๋ฐ˜๋ฉด์— ์‚ฌ๋žŒ์€ ์™ธ๋ถ€์  ์ž…๋ ฅ ์—†์ด self-thinking์„ ํ•จ์œผ๋กœ์จ ์ถ”๋ก  ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” LLM๋„ ์˜ค์ง unlabeled dataset๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ self-improve ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์„ค๋ช…ํ•œ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” CoT prompting๊ณผ Self-Consistency๋ฅผ ์‚ฌ์šฉํ•ด์„œ unlabeled question์— ๋Œ€ํ•œ 'high-confidence' ratinoale-augmented answer๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด PLM์„ ์‚ฌ์šฉํ•˜๊ณ  ์ด self-generated solution์„ ์ด self-generated solution์„ ํƒ€๊นƒ output์œผ๋กœ ํ•ด์„œ ..