Paper Reading ๐Ÿ“œ

Paper Reading ๐Ÿ“œ/Mathematics(์„ ํ˜•๋Œ€์ˆ˜, ํ™•๋ฅ ๊ณผ ํ†ต๊ณ„, ๋ฏธ์ ๋ถ„ํ•™)

ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™ - 5์žฅ ๋Œ€๊ฐํ™”

Friedberg Linear Algebra ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™์„ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ๊ฐ๊ฐ์˜ ์žฅ ๋ณ„๋กœ ์ •๋ฆฌ๋ฅผ ํ•˜์˜€๋‹ค. Table of Contents 1. ๋ฒกํ„ฐ๊ณต๊ฐ„ 2. ์„ ํ˜•๋ณ€ํ™˜๊ณผ ํ–‰๋ ฌ 3. ๊ธฐ๋ณธํ–‰๋ ฌ์—ฐ์‚ฐ๊ณผ ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹ 4. ํ–‰๋ ฌ์‹ 5. ๋Œ€๊ฐํ™”$($This post$)$ 6. ๋‚ด์ ๊ณต๊ฐ„ 7. ํ‘œ์ค€ํ˜• The overview of this chapter 5์žฅ์—์„œ๋Š” ๊ณ ์œณ๊ฐ’, ๊ณ ์œ ๋ฒกํ„ฐ, ๋Œ€๊ฐํ™”๋ฅผ ํ•™์Šตํ•˜์˜€๋‹ค. ์ด ์ฃผ์ œ์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์‘์šฉ์€ ํ–‰๋ ฌ ๊ทนํ•œ์„ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 5.4์ ˆ์—์„œ๋Š” ๋ถˆ๋ณ€ ๋ถ€๋ถ„๊ณต๊ฐ„๊ณผ ์ผ€์ผ๋ฆฌ-ํ•ด๋ฐ€ํ„ด ์ •๋ฆฌ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. 5.1 ๊ณ ์œณ๊ฐ’๊ณผ ๊ณ ์œ ๋ฒกํ„ฐ ์•ž์„œ 2.5์ ˆ์—์„œ $\textbf{R}^2$์—์„œ ์ง์„  $y=2x$์— ๋Œ€ํ•œ ๋Œ€์นญ ๊ณต์‹์„ ์œ ๋„ํ•˜์˜€๋‹ค. ์œ ๋„ ๊ณผ์ •์˜ ํ•ต์‹ฌ์€ $[\textbf{T}]_{\beta^{'}}$์ด ๋Œ€..

Paper Reading ๐Ÿ“œ/Mathematics(์„ ํ˜•๋Œ€์ˆ˜, ํ™•๋ฅ ๊ณผ ํ†ต๊ณ„, ๋ฏธ์ ๋ถ„ํ•™)

ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™ - 4์žฅ ํ–‰๋ ฌ์‹

Friedberg Linear Algebra ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™์„ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ๊ฐ๊ฐ์˜ ์žฅ ๋ณ„๋กœ ์ •๋ฆฌ๋ฅผ ํ•˜์˜€๋‹ค. Table of Contents 1. ๋ฒกํ„ฐ๊ณต๊ฐ„ 2. ์„ ํ˜•๋ณ€ํ™˜๊ณผ ํ–‰๋ ฌ 3. ๊ธฐ๋ณธํ–‰๋ ฌ์—ฐ์‚ฐ๊ณผ ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹ 4. ํ–‰๋ ฌ์‹$($This post$)$ 5. ๋Œ€๊ฐํ™” 6. ๋‚ด์ ๊ณต๊ฐ„ 7. ํ‘œ์ค€ํ˜• The overview of this chapter 4์žฅ์—์„œ๋Š” ํ–‰๋ ฌ์‹์— ๋Œ€ํ•˜์—ฌ ํ•™์Šตํ•˜์˜€๋‹ค. ํ–‰๋ ฌ์‹์€ ๊ณผ๊ฑฐ์—๋Š” ๋Œ€๋‹จํžˆ ์ค‘์š”ํ•œ ์ฃผ์ œ์˜€์œผ๋‚˜, ์ตœ๊ทผ์—๋Š” ๊ทธ ์ค‘์š”์„ฑ์ด ๋งŽ์ด ์ค„์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ด ์žฅ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์„ ํƒ์ง€๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํ–‰๋ ฌ์‹์„ ์ด๋ก ์ ์œผ๋กœ ์™„๋ฒฝํžˆ ๊ทœ๋ช…ํ•˜๋Š” ๊ธธ$($4.1์ ˆ ๋ถ€ํ„ฐ 4.3์ ˆ$)$๊ณผ ์ดํ›„ ์žฅ์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํ–‰๋ ฌ์‹์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ์‚ฌ์‹ค๋“ค์„ ์š”์•ฝํ•œ ๊ธธ$($4.4์ ˆ$)$์ด๋‹ค. ์ด๋Š” ๋‹น์‹ ์˜ ํ–‰๋ ฌ์‹์— ๋Œ€ํ•œ ํ•„์š”์— ๋”ฐ๋ผ..

Paper Reading ๐Ÿ“œ/Mathematics(์„ ํ˜•๋Œ€์ˆ˜, ํ™•๋ฅ ๊ณผ ํ†ต๊ณ„, ๋ฏธ์ ๋ถ„ํ•™)

ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™ - 3์žฅ ๊ธฐ๋ณธํ–‰๋ ฌ์—ฐ์‚ฐ๊ณผ ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹

Friedberg Linear Algebra ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™์„ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ๊ฐ๊ฐ์˜ ์žฅ ๋ณ„๋กœ ์ •๋ฆฌ๋ฅผ ํ•˜์˜€๋‹ค. Table of Contents 1. ๋ฒกํ„ฐ๊ณต๊ฐ„ 2. ์„ ํ˜•๋ณ€ํ™˜๊ณผ ํ–‰๋ ฌ 3. ๊ธฐ๋ณธํ–‰๋ ฌ์—ฐ์‚ฐ๊ณผ ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹$($This post$)$ 4. ํ–‰๋ ฌ์‹ 5. ๋Œ€๊ฐํ™” 6. ๋‚ด์ ๊ณต๊ฐ„ 7. ํ‘œ์ค€ํ˜• The overview of this chapter 3์žฅ์—์„œ๋Š” ๋ฒกํ„ฐ๊ณต๊ฐ„๊ณผ ์„ ํ˜•๋ณ€ํ™˜์„ ์ด์šฉํ•œ ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹์˜ ํ’€์ด๋ฒ•์„ ํ•™์Šตํ•˜์˜€๋‹ค. 3.1 ๊ธฐ๋ณธํ–‰๋ ฌ์—ฐ์‚ฐ๊ณผ ๊ธฐ๋ณธํ–‰๋ ฌ ์ด๋ฒˆ ์ ˆ์—์„œ๋Š” 3์žฅ์—์„œ ๋‘๋ฃจ ์‚ฌ์šฉํ•  ๊ธฐ๋ณธ์—ฐ์‚ฐ์„ ์ •์˜ํ•œ๋‹ค. ์ดํ›„ ๊ธฐ๋ณธ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ ํ˜•๋ณ€ํ™˜์˜ ๋žญํฌ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹์˜ ํ•ด๋ฅผ ๊ตฌํ•œ๋‹ค. ๊ธฐ๋ณธํ–‰๋ ฌ์—ฐ์‚ฐ์—๋Š” ๋‘ ์ข…๋ฅ˜$($ํ–‰์—ฐ์‚ฐ, ์—ด์—ฐ์‚ฐ$)$์ด ์žˆ์œผ๋ฉฐ ํ–‰์—ฐ์‚ฐ์ด ๋” ์œ ์šฉํ•˜๋‹ค. ๊ธฐ๋ณธ์—ฐ์‚ฐ์€ ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹์˜ ๋ณ€์ˆ˜๋ฅผ ์†Œ๊ฑฐํ• ..

Paper Reading ๐Ÿ“œ/Mathematics(์„ ํ˜•๋Œ€์ˆ˜, ํ™•๋ฅ ๊ณผ ํ†ต๊ณ„, ๋ฏธ์ ๋ถ„ํ•™)

ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™ - 2์žฅ ์„ ํ˜•๋ณ€ํ™˜๊ณผ ํ–‰๋ ฌ

Friedberg Linear Algebra ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™์„ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ๊ฐ๊ฐ์˜ ์žฅ ๋ณ„๋กœ ์ •๋ฆฌ๋ฅผ ํ•˜์˜€๋‹ค. Table of Contents 1. ๋ฒกํ„ฐ๊ณต๊ฐ„ 2. ์„ ํ˜•๋ณ€ํ™˜๊ณผ ํ–‰๋ ฌ$($This post$)$ 3. ๊ธฐ๋ณธํ–‰๋ ฌ์—ฐ์‚ฐ๊ณผ ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹ 4. ํ–‰๋ ฌ์‹ 5. ๋Œ€๊ฐํ™” 6. ๋‚ด์ ๊ณต๊ฐ„ 7. ํ‘œ์ค€ํ˜• The overview of this chapter 2์žฅ์—์„œ๋Š” ์„ ํ˜•๋ณ€ํ™˜๊ณผ ํ–‰๋ ฌ์˜ ๊ด€๊ณ„$($์˜๊ณต๊ฐ„, ์ƒ๊ณต๊ฐ„, ์„ ํ˜•๋ณ€ํ™˜์˜ ํ–‰๋ ฌํ‘œํ˜„, ๋™ํ˜•์‚ฌ์ƒ, ์ขŒํ‘œ๋ณ€ํ™˜$)$์„ ํ•™์Šตํ•˜์˜€๋‹ค. 2.1 ์„ ํ˜•๋ณ€ํ™˜, ์˜๊ณต๊ฐ„, ์ƒ๊ณต๊ฐ„ ์ •์˜์—ญ์ด $\textbf{V}$์ด๊ณ , ๊ณต์—ญ์ด $\textbf{W}$์ธ ํ•จ์ˆ˜ $\textbf{T}$๋ฅผ $\textbf{T} : \textbf{V} \to \textbf{W}$๋ผ ํ‘œ๊ธฐํ•œ๋‹ค. ์ •์˜ $\textbf{V}$์™€ $..

Paper Reading ๐Ÿ“œ/Mathematics(์„ ํ˜•๋Œ€์ˆ˜, ํ™•๋ฅ ๊ณผ ํ†ต๊ณ„, ๋ฏธ์ ๋ถ„ํ•™)

ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™ - 1์žฅ ๋ฒกํ„ฐ๊ณต๊ฐ„

Friedberg Linear Algebra ํ”„๋ฆฌ๋“œ๋ฒ„๊ทธ ์„ ํ˜•๋Œ€์ˆ˜ํ•™์„ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ๊ฐ๊ฐ์˜ ์žฅ ๋ณ„๋กœ ์ •๋ฆฌ๋ฅผ ํ•˜์˜€๋‹ค. Table of Contents 1. ๋ฒกํ„ฐ๊ณต๊ฐ„$($This post$)$ 2. ์„ ํ˜•๋ณ€ํ™˜๊ณผ ํ–‰๋ ฌ 3. ๊ธฐ๋ณธํ–‰๋ ฌ์—ฐ์‚ฐ๊ณผ ์—ฐ๋ฆฝ์ผ์ฐจ๋ฐฉ์ •์‹ 4. ํ–‰๋ ฌ์‹ 5. ๋Œ€๊ฐํ™” 6. ๋‚ด์ ๊ณต๊ฐ„ 7. ํ‘œ์ค€ํ˜• The overview of this chapter 1์žฅ์—์„œ๋Š” ๋ฒกํ„ฐ๊ณต๊ฐ„์˜ ๊ธฐ๋ณธ์ ์ธ ์ด๋ก $($๋ถ€๋ถ„๊ณต๊ฐ„, ์ผ์ฐจ๊ฒฐํ•ฉ, ์ผ์ฐจ๋…๋ฆฝ๊ณผ ์ผ์ฐจ์ข…์†, ๊ธฐ์ €, ์ฐจ์›$)$์— ๋Œ€ํ•ด ํ•™์Šตํ•˜์˜€๋‹ค. 1.1 ๊ฐœ๋ก  ํž˜, ์†๋„, ๊ฐ€์†๋„ ๋“ฑ ๋งŽ์€ ๋ฌผ๋ฆฌ์  ๊ฐœ๋…์€ ํฌ๊ธฐ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋ฐฉํ–ฅ ์ •๋ณด๋„ ํ•จ๊ป˜ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด์ฒ˜๋Ÿผ ํฌ๊ธฐ์™€ ๋ฐฉํ–ฅ์„ ๋ชจ๋‘ ๊ฐ€์ง„ ๋ฌผ๋ฆฌ๋Ÿ‰์„ '๋ฒกํ„ฐ$($vector$)$' ๋ผ๊ณ  ํ•œ๋‹ค. ๋ฒกํ„ฐ๋Š” ํ”ํžˆ ํ™”์‚ดํ‘œ๋กœ ํ‘œํ˜„ํ•˜๋ฉฐ, ๋ฒกํ„ฐ์˜ ํฌ๊ธฐ๋Š” ํ™”์‚ดํ‘œ์˜ ๊ธธ..

Paper Reading ๐Ÿ“œ/Mathematics(์„ ํ˜•๋Œ€์ˆ˜, ํ™•๋ฅ ๊ณผ ํ†ต๊ณ„, ๋ฏธ์ ๋ถ„ํ•™)

๋ถ„๋ฅ˜์„ฑ๋Šฅํ‰๊ฐ€์ง€ํ‘œ(Precision, Recall, f1-score)

What is this? machine learning์—์„œ ๋ชจ๋ธ์ด๋‚˜ ํŒจํ„ด์˜ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ ํ‰๊ฐ€์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์ง€ํ‘œ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์˜ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋” ์ž์„ธํ•˜๊ฒŒ ํŒŒ์•…์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ์˜ ๊ฐœ์„  ๋ฐฉํ–ฅ์„ฑ์„ ์žก์•„๊ฐˆ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. Table of Contents 1. Precision, Recall, and Accuracy 1-1. Precision$($์ •๋ฐ€๋„$)$ 1-2. Recall$($์žฌํ˜„์œจ$)$ 1-3. Accuracy$($์ •ํ™•๋„$)$ 1-4. F1-score 2. ๊ทธ ์™ธ์˜ ์ง€ํ‘œ๋“ค 2-1. ROC curve 2-2. AUC ๋ณธ๋ฌธ์œผ๋กœ ๋“ค์–ด๊ฐ€๊ธฐ ์ „์—, confusion matrix์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ฒ ๋‹ค. confusion matrix๋Š” ํ›ˆ๋ จ์„ ํ†ตํ•œ prediction์˜ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ..

Paper Reading ๐Ÿ“œ/Computer Vision

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

The overview of this paper ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒˆ๋กœ์šด vision Transformer์ธ Swin Transformer์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด Swin Transformer๋Š” computer vision์— ๋Œ€ํ•ด general-purpose ์ฒ™์ถ”๊ฐ™์€ ์—ญํ• ์„ ํ•œ๋‹ค. ์‹œ๊ฐ์  ํŠน์„ฑ์˜ ๋‹ค์–‘ํ•œ scale๊ณผ text์— ๋น„ํ•ด ๊ณ ํ•ด์ƒ๋„์ธ ์ด๋ฏธ์ง€์™€ ๊ฐ™์€ computer vision๊ณผ NLP ๋‘ ์˜์—ญ์˜ ์ฐจ์ด ๋•Œ๋ฌธ์—, Transformer์„ computer vision์— ์ ์šฉ์‹œํ‚ค๋Š”๋ฐ ๋งŽ์€ ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ฐจ์ด์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ๋…ผ๋ฌธ์—์„œ๋Š” representation์ด Shifted Windows์™€ ํ•จ๊ป˜ ๊ณ„์‚ฐ๋˜๋Š” hierarchical Transformer์„ ์ œ์•ˆํ•˜์˜€๋‹ค. shifted windowing ๊ธฐ๋ฒ•์€..

Paper Reading ๐Ÿ“œ/Computer Vision

ViT - An Image Worth 16 x 16 Words: Transformers for Image Recognition at Scale

The overview of this paper Transformer architecture๋Š” NLP ๋ถ„์•ผ์—์„œ ๋งค์šฐ ๊ถŒ์œ„์ ์ด๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋ฅผ computer vision์— ์‚ฌ์šฉํ•˜๋Š” ์˜ˆ๋Š” ๊ทนํžˆ ์ œํ•œ๋˜์–ด ์žˆ๋‹ค. convolutional network์˜ ์‚ฌ์ด์— attention์„ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, convolutional network์˜ ์ „๋ฐ˜์ ์ธ ๊ตฌ์„ฑ์„ ๋ฐ”๊พธ๊ธด ํ•˜์ง€๋งŒ, ์ ˆ๋Œ€ ์ „๋ฐ˜์ ์ธ ๊ตฌ์กฐ๋ฅผ ๋ฐ”๊พธ์ง€๋Š” ์•Š๋Š”๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ CNN์— ์˜์กดํ•  ํ•„์š” ์—†์ด image์˜ patch์— ์ง์ ‘์ ์œผ๋กœ Transformer๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์คฌ๋‹ค. ๊ฑฐ๋Œ€ํ•œ ์–‘์˜ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์—์„œ pre-train์„ ํ•˜๊ณ , ์ด๋ฏธ์ง€ ๋ฒค์น˜๋งˆํฌ์— ์ ์šฉํ•œ ๊ฒฐ๊ณผ, Vision Transformer$($ViT$)$๋Š” ๋”์šฑ ์ ์€ ๊ณ„์‚ฐ ๋น„์šฉ์œผ๋กœ..

Paper Reading ๐Ÿ“œ/Deep Learning

CNN network์˜ ์—ญ์‚ฌ

What is the purpose of this post? ์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” CNN network์˜ ์—ญ์‚ฌ์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์•˜๋‹ค. CNN์—๋Š” ์—ฌ๋Ÿฌ๊ฐ€์ง€ network๊ฐ€ ์žˆ์—ˆ๋Š”๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด LeNet๊ณผ AlexNet ๋“ฑ์ด ์žˆ์—ˆ๋‹ค. ์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” ์–ด๋– ํ•œ CNN network๋“ค์ด ์žˆ์—ˆ๋Š”์ง€ ์•Œ์•„๋ณด์•˜๋‹ค. Table of Contents 1. LeNet 2. AlexNet 3. VGGNet 4. GoogLeNet 5. ResNet 6. ResNeXt 7. Xception 8. MobileNet 9. DenseNet 10. EfficientNet 11. ConvNext 1. LeNet$($1998$)$ Gradient-Based Learning Applied to Document Recognition LeNet์€ ์†..

Paper Reading ๐Ÿ“œ/Natural Language Processing

GPT-2: Language Models are Unsupervised Multitask Learners ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

Pre-trained Language Modeling paper reading ์š”์ฆ˜ NLP ๋ถ„์•ผ์—์„œ ๋œจ๊ฑฐ์šด ๊ฐ์ž์ธ pre-trained Language Modeling์— ๊ด€ํ•œ ์œ ๋ช…ํ•œ ๋…ผ๋ฌธ๋“ค์„ ์ฝ๊ณ  ๋ฆฌ๋ทฐ๋ฅผ ํ•˜์˜€๋‹ค. ์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” ์ €๋ฒˆ ํฌ์ŠคํŠธ์ธ GPT-1์˜ ํ›„์† ๋ชจ๋ธ์ธ GPT-2์— ๋Œ€ํ•ด์„œ ๋ฆฌ๋ทฐํ•˜์˜€๋‹ค. ELMo: 'Deep contextualized word representations' reading & review BERT: 'Pre-training of Deep Bidirectional Transformers for Language Understanding' reading & review GPT-1: 'Improving Language Understanding by Generative Pre-Trai..

Cartinoe
'Paper Reading ๐Ÿ“œ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (10 Page)